NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Python > Slickdeals: What Deals are Users Interested In?

Slickdeals: What Deals are Users Interested In?

Kai Chan
Posted on May 15, 2017

You may have heard of a site named SlickDeals. As a site with more than ten million monthly users, this deal-sharing site is a hot spot for people to share and pass judgment on offers and discounts for a huge variety of things. Ever since the early days of college, I have been visiting this site almost daily to keep up with prices for items of interest. As our boot camp cohort at NYC Data Science learned about web scraping, I felt that it would be a great idea to play around and see what more I could learn about this popular deal-sharing website.

Note: If you are uninterested in the programming aspect and are more interested in the findings, please skip the data, scrapy, and cleaning portions of this post.

The Data

Preliminary Variable Seeking

Since SlickDeals is largely a community-driven website, what better question is there to ask than what is popular with the users? In order to measure popularity, I wanted numerical values that were able to capture that.

Sample deal post on SlickDeals

Taking a look at a random deal page, I found that there were two such variables: view count, and deal score. So now that I have my dependent variables, I needed independent values that I could compare to the two. Including view count and deal score, I ended up with a total of 15 variables that I wanted to have in my data set (see Scrapy section). But how would I get this into a table format that is easy to work with?

Scrapy

This is where the Python-based Scrapy comes in handy. As described by its official GitHub repository:

Scrapy is a fast high-level web crawling and web scraping framework, used to crawl websites and extract structured data from their pages. It can be used for a wide range of purposes, from data mining to monitoring and automated testing.

So now that I figured out the information I want to extract from the website, I needed to tell Scrapy how I want it to approach this. If you are interested in learning how to use Scrapy, I recommend checking out this tutorial. Here is the summary of what I had to do with my spider:

Workflow

In general, the Scrapy Spider needs to know how you want to approach scraping each element. Mine needed to do the following:

1. Login Authorization

SlickDeals uses a forum structure for its deals, which came with one major problem: only members could see all posts. After going through a myriad of suggested solutions, I ended up finding a working solution from the example in the tutorial I provided earlier.

2. Main Parse

Each deal has it's own thread/post on the forums. I wanted information on the Hot Deals section, so I needed to tell it to make requests for each of these thread pages. When it is done collecting information from each thread on the page, the Spider needs to go find the next page and extract from the deals there. The general workflow instruction was written as shown below:

3. Parsing Elements in Each Deal Page

Now for the meat of this entire process. To get each element or variable of interest, the Spider needs to store the results of XPath Selectors:

Now that the Spider is set up, I need Scrapy to output a file for me. Using an item pipeline, I had Scrapy dump a .csv output file with these columns. It took a lot of trial and error, but after many hours I was rewarded with an output data set.

Cleaning the Data

So in order for me to use the data, I need to change variable formats so that I can use packages such as Pandas, Numpy, Matlib and Seaborn to do some data exploration and visualization. This is what I tried to do with the output from Scrapy:

  • Change columns to appropriate data types (ie. strftime, pandas functions, etc)
  • Strip whitespace from DealTitle
  • Remove Nonsensical Rows (ie. Stickied Posts, Rules, "Delete" etc)
  • Remove unwanted substrings (ie. '$' and ',' in Deal Price)
  • Remove duplicates

However, there were several problems I could not resolve, and thus lead to less variables used in the analysis at the end:

  • The DealPrice included a lot of non-numerical entries. In addition to a problem with removing '$' and ',' characters from the observations with numerical values, there were many entries that listed text such as "Buy One Get One Free" or "50% Off" instead of a nominal price. I decided to remove the Deal Price because of this.
  • On some posts, there was additional information on the user who posted the deal. However, I was not able to figure out when these were displayed, so I ended up excluding the user reputation and deals posted columns that I scraped.

Visualization and Analysis with Python Packages

Using a combination of Pandas and Matplotlib, I was able to return with these findings:

Both the ViewCount and DealScore indicate a right skew, implying that a handful of posts are generating the lion's share of the views and deal scores. This is likely due to the sparseness of good deals and an abundance of marginal, or unattractive deals posted by the community.

Below are some findings on what categories and stores are getting a high amount of views and deal scores:

View Count

Deal Score

To see all my findings for this particular project, please see my Python Notebook upload on my GitHub.

The skills the author demonstrated here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

About Author

Kai Chan

Kai Chan received his bachelor's degree in economics from the University of California, San Diego. Kai believes that with the increasing importance and prevalence of various programming tools in the world of data analysis, a career in data...
View all posts by Kai Chan >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

bangle cartier pour femme copie July 18, 2017
Hello, Malcolm. Would you care to declare an interest before we discuss this pathetic straw-man argument of yours? bangle cartier pour femme copie http://www.gioiellifini.nl/fr/replica-cartier-love-bracelet-pink-gold-plated-real-with-screwdriver-p3.htm

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application