NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Capstone > Social Network Analysis with Scalable User Behavior Scores of a Music Website

Social Network Analysis with Scalable User Behavior Scores of a Music Website

Hua Yang, Yinan Jiang, Sal Lascano, Weijie Deng, Xiao Jia, Shiva Panicker and chima okwuoha
Posted on Mar 27, 2018

In a music website, there are artists and regular users as critics. While the artists launch and share their original music songs through their profiles,  all the other regular users enjoy finding and listening to the songs, and interacting with the platform in many different ways such as saving, spotlighting music, rating, commenting, sharing, and following artists of interest. Moreover, one user may also follow another user(s), if he/she finds out that the other user always finds and shares music that are similar to their taste. These elements make up a dynamic and changing online community of music publishing, listening, sharing, and rating, etc., or a so called "social network."

In this music-oriented ecosystem, how can we build an efficient network model such that all the aforementioned various user behaviors can be well captured, such that, for marketing purposes, valuable information may be properly derived? Specifically, for a certain specified artist, can we find out the top influential users from his/her fan network? Can we identify who his/her true fans are? Also, of the social networks users, who of them are the most active users by themselves?

These are the specific questions/tasks we received from a music tech startup company, which become the very problems/goals of this team capstone project. Moreover, of particular emphasis/challenge is to make use of the available data as much as possible and derive accurate and practically reliable/usable insight information, while at the same time, the involved algorithm is readily scalable to accommodate more user behavior variables in the future.

User Behavior Data and Feature Variables

To build the desired social network, we need to take into account various kinds of user behavior information, including following and rating to artists, saving, spotlighting and listening of songs of an artist, etc. We count and convert all the available user behavior data into different feature variables, which will then be used to calculate an overall user-to-artist fan-score. The fan-score accurately represents/defines the relationship from a certain user to an artist (or to another user, in the case of one user following another user). Based on that, a social network graph can be accordingly derived.

To measure the activeness of an individual user, we take into account the total number of user activities on the website, along with some other specific user activities e.g. sharing and commenting, etc. 

Feature Variable Preprocessing

For each user behavior feature variable, we intend to calculate a score, of the same consistent range from 0 to 100. In order to do that, we need to conduct some preprocessing on the various different feature variables.

First, all of these behavior variables are different kinds of activity count. We normalize all of them with their respective measuring period of time in terms of the number of months. As such, each activity variable becomes a certain number of "count per month", which is very straightforward to interpret and control. 

After time normalization, we identify some certain user behavior variables of much larger variation ranges than the others, for which we apply log transformation to reduce their respective variation range to be similar as those of the others.

Fan Score, Activeness Score, and True Fan Score

For the calculation of a user-to-artist fan score, in order to make it be easily scalable for many more user behaviour variables possibly added in the future, we design and apply exactly the same algorithm (but just with different parameter values) to calculate a score for each variable respectively. The scores are all of the same range, and thus, can be easily aggregated together via simple weighted averaging operation into one final overall integrated fan score. Similarly, we calculate an overall user activeness score.

The fan score calculation is based on the scores of a user's music listening and other artist-oriented behaviours like following, rating, listening, etc., while a user's activeness score is calculated more based on a user's overall website activity.

Given the fan score, we need to further detect whether a fan of a certain artist is a true fan or not. For that sake, we need to further consider what fan scores the certain fan user have toward the artists other than the concerned one. In case a fan shows strong interests to many other different artists at the same time, i.e. having high fan scores for multiple artists, that fan's true-fan-ship score should be somewhat adjusted to be lower than the original fan scores. In practice, we developed a simple and robust algorithm to conduct such adjustment properly.

Social Network Analysis

With the user-to-artist fan score, we can build a social network of all the artists and regular users, and conduct proper analysis as needed. Herein, we use the NetworkX Python package for SNA. We built a directed graph with weighted edges between users and artists, where each edge starts from a user to an artist, and the weight of each edge is the related fan-score.

For the entire social network graph of all the users and artists of the music website, we tested and conducted user influence analysis in many different ways (i.e. with different influence scores/metrics) and thus, got an influence score for each user/artist. Specifically, we tested with 4 different influence scores: closeness centrality, betweenness centrality, Katz centrality (i.e. an extended version of eigenvector centrality), and the famous page-rank score. Finally, we chose to use just the single page-rank score as our default for now. Page-rank is a famous algorithm from Google, which has superior performance when measuring the importance/influence of different nodes in a directionally linked networks. An illustration graph of the algorithm is as shown below.

A demonstration of the entire network graph is provide as follows. Herein, the red nodes represent artists, while the blue nodes represent regular users. The edges represent the "following" relationship between a user and an artist, where a dark end/arrow indicates the outgoing direction.

Given a certain specific artist, we can identify all the artist's directly and indirectly connected music fans (i.e. the so-called "ego network" with the concerned artist being the central or "ego" node).

Final Answers

With all the above user scores and network works done, finally, we are able to give our answers to the targeted questions of the project. 

  • Find top influential user list of an artist 
    • Given a particular artist as input, we can identify his/her own fan network from the complete network (i.e. an โ€œego-networkโ€).
    • Find user influence scores from the complete network influence score result, and then, sort and output the top influence users in an artistโ€™s own fan-network. This would be useful insight/information to help the artist better align the marketing activities with his/her fans.  
  • Find top True-Fan list of an artist
    • Based on the list of users that have non-zero true-fan-scores with the artist.
  • Find top active user list
    • Based on calculated usersโ€™ activeness scores.

Moreover, as mentioned earlier, the involved user score calculation algorithms are readily scalable when more variables may be added in the future.

Future Directions

One future direction is to add un-popular artist handling. We found that for artists that have no any or very few fans, we give no or very poor recommendation on their top influential users. In fact, it's better than nothing if we can find similar but more popular artists (e.g. of similar genre, and/or other music characteristics, etc), and return their top fan result instead, to serve as some more meaningful recommendations for the unpopular artist.

Another direction is that: besides the current top fan recommendations for the artists, a music or artist recommendation solution can be developed as well to better serve the use of regular users.

Thank you for the interest. ๐Ÿ™‚

About Authors

Hua Yang

Hua attended 12-week data science bootcamp of NYCDSA, which is really a great and awesome experience. Thanks a lot!
View all posts by Hua Yang >

Yinan Jiang

Yinan recieved his Bachelor's Degree in Accounting from Shanghai University of Finance & Economics and Master's Degree in Economics from USC. Before data science, he worked both as an Equity Analyst and Data Analyst for major financial institutions...
View all posts by Yinan Jiang >

Sal Lascano

Sal received his B.S. from Saint Peter's University in Jersey City, NJ with a major in Mathematics and a minor in Secondary Education. He worked for four years as an account manager and sales manager in the Interior...
View all posts by Sal Lascano >

Weijie Deng

View all posts by Weijie Deng >

Xiao Jia

Xiao received a MS degree in Biomedical Informatics from Nova Southeastern University in Florida. She was working as a data analyst at a healthcare IT company in Fort Lauderdale, where she developed her passion and got to know...
View all posts by Xiao Jia >

Shiva Panicker

Shiva first got involved with Data Science through a Topological Data Science reading group. After six months of TDA studies, he realized there were fundamentals he'd yet to master, which is why he enrolled in NYCDSA. When not...
View all posts by Shiva Panicker >

chima okwuoha

Chima has a B.S. in physics and is currently studying Electrical Engineering at New York University. In undergrad he spent 2 years researching Fourier Optics in and Image processing. During this time he cultivated computer science skills to...
View all posts by chima okwuoha >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

meritking May 27, 2023
Social Network Analysis with Scalable User Behavior Scores of a Music Website | Data Science Blog https://eco.colombiaaprende.edu.co:443/2021/07/22/teaching-guide-bullying-and-conflict/
https://www.lovesbodybuilding.com August 17, 2019
It is really a great and useful piece of info. I am satisfied that you simply shared this useful information with us. Please stay us up to date like this. Thanks for sharing.
sheldon June 6, 2018
Great article. what software do you use to get those social network graphs?

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application