NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Studying Data to Predict Housing Prices in Ames

Studying Data to Predict Housing Prices in Ames

Stella Oliveira, Mi (Mimi) Chung and Yadi Yang
Posted on Mar 18, 2019
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

As an entry for the Iowa House Pricing Prediction Kaggle Competition, we put together a unique set of python code that allowed us a score in the 15th percentile. The data set provided by Kaggle introduced 1460 houses, each with 80 different characteristics that may or may not contribute to the way each house is the price. In this study and exploration, we utilize machine learning methods in python and a combination of regression methods to attempt house pricing prediction.

Data Cleaning

The dataset required initial cleaning and filling of empty or meaningless values. In the first figure, we observe a visualization of our data set an its "NA" or missing values. Our goal was to assign those empty values to help us increase our accuracy in overall housing price prediction.

Studying Data to Predict Housing Prices in AmesFigure 1: Initial visualization of dataset and missing or empty values (white voids).

We utilized three ways of data cleaning. To tackle the variables containing missing or empty values, we took a look at each one and replaced the missing value with the overall mode for all of the houses in that variable. In some cases, we decided to replace with the modes of each neighborhood instead of the whole dataset. Figure 2 shows the dataset create that isolates the mode for each neighborhood and variable, so the values that replace the missing values are more specific to different neighborhoods. This allowed us to create a more sophisticated data set that was tailored to the individual characteristics of different neighborhoods.

Studying Data to Predict Housing Prices in AmesFigure 2: Data set created from modes of neighborhoods for each variable.

Some variables required special case handling due to that missing value to be not missing at random. One example of this was the PoolQC variable which contained the most amount of missing values. To fill the missing data, the variable was compared to the PoolArea variable.

Realistically, if the PoolArea value for a house exists and the PoolQC does not, then that particular house does contain a pool, however the quality of the pool was left unrecorded. The PoolQC variable's missing values were assigned according to the OverallQual of the home. If the OverallQual was larger than 5, the PoolQC missing value was filled with 'Gd', and filled with 'Fa' for values less than 5. Figure 3 shows an example of three missing PoolQC values and their new assignments.

Studying Data to Predict Housing Prices in Ames
Figure 3: some of PoolQC missing value assignments.

Moving onto an initial look at outliers, we first removed two data points from GrLivingArea. In the following graph, those data points (highlighted in yellow) do not follow the general trend of GrLivingArea and SalePrice. We later return to outlier removal after we began to run models.

Figure 4: Initial two data outliers removed from GrLivingArea.

Sale Price Variable

Our goal in this project is to predict the Sale Price given the features in the test dataset. So first, we examined this column on the train dataset. 

Figure 5: Sale Price variable is not normally distributed.

When we look at the histogram of Figure 5, it is possible to notice that there is a skew in this variable, which violates one of the assumptions of multiple linear regression, normality.  To try to get a variable with a standard normal distribution, we applied the log transformation (Figure 6).

Figure 6: Sale Price variable after the log transformation.

Feature Engineering

When we analyzed all the features, we realized some feature could be concatenated. The first one was the total square feet of the house. 

  • BsmtFinSF1
  • BsmtFinSF2
  • 1stFlrSF
  • 2ndFlrSF

Another combined variable is the bathrooms in the house. We counted fullbath for 1 and halfbath for 0.5.

  • FullBath
  • HalfBath
  • BsmtFullBath
  • BsmtHalfBath

We also combined the total porch size.

  • OpenPorchSF
  • EnclosedPorch
  • 3SsnPorch
  • Screenporch
  • WoodDeckSF

Also, to be able to do the linear regression models, we dummified all categorical variables into dummy ones.

Data Correlations

To better understand the overall dataset, we analyzed the correlation among the variables of the housing data set with the heatmap on the Figure 7. In this chart, darker colors indicate a larger correlation between two variables while lighter colors show a smaller correlation.

Figure 7: Correlation among the variables.

The next heatmap (Figure 8) indicates the most correlate features with sale price. It is possible to see that variables such as overall quality, size, and age are highly correlated with price.

Figure 8: Most correlate features with sale price variable.

Another chart that can give us a good idea about variable relationship is the scatter plot shown on Figure 9.

Figure 9: Relationship between variables.

Outliers in Our Data

First, we created a linear regression Ridge model. It produced good results with default values. The goal here is to use a straightforward model to identify any outlying points which are properties with sale prices far away from what's expected given their features.

Then, we defined a function that fits the model and checks the residuals between the model's predicted sale prices and the true sale prices. We calculate the standard deviation of the residual: and around 20 or so properties with residuals greater than three times this standard deviation are removed from the training data so they don't skew the parameters of the fitted models.

We also did a similar thing with Elastic net, which produced similar results. Then, we graphed the outliers for these function on Figure 10 (orange dots), and we found the index of these outliers and we removed these rows.

Figure 10: Outliers based on the Elastic Net model.

Feature selection/modeling

Regular regression coefficients describe the relationship between each predictor variable and the response.

The first selection method is to find the coefficients of predictors using sklearn preprocessing and pipeline packages of robustscaler and make pipeline.

Robustscaler removes the median and scales the data according to the quantile range. The reason why we used this is because Standardization of a dataset is very important. Typically this is done by removing the mean and scaling to unit variance. However, there might be additional outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results.

In addition, we used tenfold cross-validation. Figure 11 is the picture of found coefficient importance for our first model.

Figure 11: Coefficient importance for the first model.

Secondly, we used embedded methods of feature selection:  Ridge & Lasso. This helped us regularize our models by adding a penalty against complexity to reduce the degree of overfitting.

We ran both original models in addition to these models with built in validation (RidgeCV & LassoCV), which automatically selected the ideal value of alpha.

Only features within 2 standards of deviation.

Figure 12 is the coefficients of after running Lasso.

Figure 12: Coefficients importance for the Lasso model.

Next, we used Elastic nets, which combine L1 & L2 methods which address โ€œover-regularizationโ€ by balancing between lasso and ridge penalties. The alpha value was tuned with cross-validation.

More Modeling

We implemented gridsearch for optimal parameters. We used cross-validation function of XGBoostโ€™s โ€˜early stoppingโ€™ to obtain optimal boosting rounds.

Later, we discovered the method of implementing meta-regressor through a process called stacking generalizations which trains a model on a part of the training set. The stackingCVRegressor and Vecstack are some of the options.

These models split training data first into a new training set and a holdout set. Then the algorithm tests these models on the holdout set and uses these predictions as input for the 'meta model, which is the meta-regressor to be fitted on the ensemble of regressor.  Surprisingly, parameter tuning for this model is fairly easy. However this took forever to run!  Around 1 hour each time. However, it didnโ€™t give the lowest RSME score but it is still immensely useful.

Lastly, final averaging weights are mostly trial and error. We gave the last 2 0.3 weights and the other one 0.2 or 0.1 weights.

Result

The child of our combined effort resulted in a 0.115 Kaggle RSME score which places us in the rank 621.

About Authors

Stella Oliveira

Data scientist with a background in financial services and demonstrated experience managing data and deploying predictive models. Highly motivated to combine the ability to thrive in a fast-paced work environment with the fascination for generating insights from complex...
View all posts by Stella Oliveira >

Mi (Mimi) Chung

View all posts by Mi (Mimi) Chung >

Yadi Yang

View all posts by Yadi Yang >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application