NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Shiny > Global Carbon Footprint (1970 - 2015), Carbon Emission

Global Carbon Footprint (1970 - 2015), Carbon Emission

Sabbir Mohammed
Posted on Mar 7, 2019

Project GitHub | LinkedIn:   Niki   Moritz   Hao-Wei   Matthew   Oren

The skills we demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

This project is an interactive and dynamic visualization tool that displays global Carbon emissions data over the years (from 1970 till 2015). It is hosted on a Shiny application that was developed in RStudio.

Please check out the app here & the code behind the project can be viewed here.

Project Motivation


Even though the history of climate change science reaches further back, one of the earliest recognizable and significant actions taken by the global community to address climate change from artificial human activity was the United Nations Framework Convention on Climate Change (UNFCCC) established in 1992.

In fact, the Kyoto Protocol which was the result of UNFCC negotiations was not adopted until 1997. Since then, a larger discussion on climate change has taken root in global media and culture and has truly become widespread. Several attempts to reach a global consensus on the courses of action necessary to remedy this increasingly urgent issue has accumulated into the Paris Agreement in 2015.

I was curious in our progress (as the human race) on this existential issue, and quite naturally, the years 1992 and 2015 felt significant as markers in this evaluation. Fortunately, I was able to find a dataset that complied Carbon emissions data on roughly the same number of years before and after 1992.

More specifically, I was interested in seeing chronological relationships between population size and carbon emissions and to see how those trends varied over nations globally.

 

Project Overview


Looking to bring the numbers to life, the purpose of this project isn't necessarily to provide inferential information through analysis but rather to provide a visual insight into the story the data is trying to tell - the views that are not available through the rows and columns of .csv files.

The data source itself, however, consists of 190 countries and their carbon emissions data through 6 different metrics that are categorized over production-based and consumption-based emissions. Also available in the data set are the population and GDP records.

The data for this project is from the worldmrio.com website. The Eora site describes itself as a "global supply chain database" that "consists of a multi-region input-output table (MRIO) model". The particular data set is structured with 1,522 observations and 47 variables.

The complete information and data are available here.

 

Project Application (ShinyApp)


The application is designed to be intuitive for the user by communicating insights into wide-ranging and complex data through concise and direct visualizations. The Shiny Dashboard format was used to provide various ways to look at the data set.

The following is a screenshot of the home page of the application:

Beyond the home page, the application consists of useful aggregations of the data, outlined by the page tabs on the left. This is where the project focuses on its story-telling capabilities.

 

Project Results


Ultimately, the perspectives extracted from the visualizations are limited only by the user's ability to analyze the information and the external, corroborating knowledge available. The next step within a Data Science approach would be statistical analysis to generate quantifiable inferences and perhaps even further into predictive modeling. But prior to those efforts, this application or tool essentially tries to enable preprocessing or EDA (Exploratory Data Analysis) as an initial step.

Here are some interesting trends I was able to observe from the application:

1. Global Carbon Emissions through Consumption(in GgCO2) in 1995 and 2015:

Global Carbon Emissions from Consumption (in GgCO2) in 1995

Global Carbon Emissions from Consumption (in GgCO2) in 2015

The global map representation of the data by year reveals trends that can be observed/ reinforced by trade, production, and population rates globally. We see that in 1995, the United States outpaces China in consumption even though the population is lower. However, several years of sustained economic growth has enabled the average Chinese consumer to attain more products and thereby increasing their amount of emissions from consumption. The trend from 1995 is reversed in 20 years by 2015.

2. Global (Aggregate) Carbon Emissions (in GgCO2) from 1970 - 2015: Consumption vs. Production:

Global Aggregate Carbon Emissions through Consumption (in GgCO2) from 1970 till 2015

Global Aggregate Carbon Emissions through Production /GDP (in GgCO2/ Bn USD) from 1970 till 2015

A much larger trend that we are able to notice through the project are the differences in global aggregate emission levels from consumption versus emission levels from production per unit of GDP (Gross Domestic Product) from 1970 until 2015. 

The steady rise in aggregate, nominal emission levels from consumption can be attributed to growing global population rates as well as an overall increase in access to technology and products. However, if we compare this trend to emission from production as a rate of GDP (if we were to consider GDP as a measure of productivity in global commerce), we see an aggregate downward trend. This is interesting and perhaps attributable to the increasing efficiency of our current technologies (transportation, industrial etc.)

3. Differences in Consumption vs. Production (carbon emission levels) between the United States and China from 1970 until 2015 :

China - Carbon Emission Levels (based on Consumption vs Production) (in GgCO2) from 1970 until 2015

United States - Carbon Emission Levels (based on Consumption vs Production) (in GgCO2) from 1970 until 2015

As an additional example of the type of trends that can be observed through this project, the third page allows the user to see consumption vs production emission levels of each country. If we compare the US and China (as the largest two economies and also polluters) we see certain trends become apparent.

A brief inspection of China shows a steady and uniform rise in both consumption and production based emission levels, however, the emission from production is consistently higher. This is clearly indicative of the increasing manufacturing economy developed in China, as well as their growing consumer rates.

Similarly, inspecting the US chart reveals the increasing service economy that has developed in the United States where consumption levels are higher than production emissions. Additionally, we see a decrease in overall rates starting around 2005. This is an encouraging trend, perhaps indicative of a cultural and policy shift.

Future Work


There is definitely room for improvement and expansion. I would like to apply some refined statistical analysis to the data to glean better insights and inferences. Since the completion of this project, my data science knowledge and experience has definitely improved and I am looking to apply those changes to this project as well!

 


 

Thank you for viewing my project!

-  All suggestions and comments are welcome  -

About Author

Sabbir Mohammed

Sabbir is an aspiring data scientist with a recent certification from the NYC Data Science Academy. He obtained his BS in Mechanical Engineering from Rensselaer Polytechnic Institute and has since spent several years in logistics and procurement for...
View all posts by Sabbir Mohammed >

Related Articles

Data Analysis
Car Sales Report R Shiny App
Machine Learning
Ames House Prices Predictions
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
R
R Shiny Shows Decline in Even Strongest Democracies
Data Visualization
Python Shows Factors Influencing University Retention Rates

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application