NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Transactional Cost on High Frequency Trading

Transactional Cost on High Frequency Trading

Nan(Lainey) Liu
Posted on May 12, 2018

Image result for high frequency trading

Special thanks to my great teammate, Qiang Ji.

This research explores two execution approaches i.e Market Taking and Opportunistic Market Making. In short, Market Taking (MT) method allows us to send market order and aggress market immediately with the latest quotes. While, Opportunistic Market Making (OMM) method is more risky, which will send limit orders and wait under the certain time limit for a more beneficial price to fill the order. More specifically, OMM can also be divided into 2 types according to how to set the limit order price: OMMMid will set the mid-price as limit price; OMMSide will set a limit price on your side. Undoubtedly, different execution methods should have different characteristics.

 

PnL Definition

The 3 execution methodologies can be summarized as:

It needs to be mentioned that, in this report, we define **execution PnL** for each order as:

where ExecutedPrice is the price where an order is finally filled; MidPrice is the latest mid-price when entering the market, and Buy is a signal {-1,1}.

 

Exit Rule

Our team also implement some rules for the stop loss and the time out.

  •  the timeout and stop loss have the **same priority**. Whichever happens the first, got to fill the order.
    -   for example, we have an order to buy at time 0(picture below), we implement OMMSide method and join the bid at $12.05. Then, at time 1, the price moved up. If our stop loss PnL = 0.05, then the stop-loss will be triggered because midprice minus offer price (12.105-12.05 = 0.055) exceed 0.05. There is more than one way to define the stop loss, our team chooses this method.
  • On the other hand, if the time 1 is after the timeout limit. Then the order will be executed based on the market price when the time is out

Execution Engine Building

The code will be on my GitHub

Implementing and Analysis

In this part, we will back-test 3 approaches with SL=-0.00035 and TTE=10, and report some statistics in the recapitulating table. In addition to required statistics, we also computed **Hitting Ratios**(proportion of positive PnLs), 95VaR and standard deviation of PnL for each method, in order to provide a more comprehensive view of the execution performance.

By comparing total PnLs of the 3 execution methods, we find that:

OMMSide > OMMMid > MT
OMMSide has the highest PnL as the result of successfully taking opportunistic executions. Another interesting thing we found is that all the 3 execution methods have a dramatic decline in PnL around 2 AM, Jan 11st. At that time, market quote happened to have an unexpected widen spread.

 

 

Since the original numbers of PnL are too small, we rescale them by multiplying 1000. As shown in the table, PnL of OMMSide is the highest and also volatile. PnL of MT is the lowest but also less risky. As compensation, the execution difficulty is also higher if you are seeking higher average PnL. OMMSide tended to have the highest execution time and also be more likely to touch SL or TTE.

PnL on Different Stop Loss
We set the TTE to be 10 s constant, we enumerate different SL to test its influence on PnL median as well as Execution Time median.

PnL on Different TTE

 

PnL on different Alpha Engines

The orders in the file are generated by different Alpha Engines. Since the final executed prices are given in the data, we can directly calculate the PnL for each order by combing corresponding mid-prices. After grouping order PnL for each engine, we may get some insights into the difference between AEs in execution costs.

From the perspective of execution PnL, we find MAR performed a better opportunistic method in execution, and got a positive average PnL. On the contrary, SOM performed worst, since it ordered many times but ended up with lowest average PnL. It seems more times you trade, more likely you will suffer a large transaction cost. That is to say, average PnL is negatively correlated with trade times.

Fill or Kill Execution

Another common OMM execution method in practice is called "Fill or Kill". This approach also sends limit orders. But unlike previous OMM strategies: "Fill or Kill" would wait a certain time to see whether limit order could be filled. If time is out and order is not filled, then cancel ("kill") the order. Obviously, implementing this strategy, all the executed orders should have positive PnL, while there also would be some canceled orders leaving NA in the PnL column. We believe it is worthwhile to dig into such a strategy and compare it with the others.

Conclusion:

As we can see, from the perspective of risk, MT has lowest VaR and std, while its average PnL is also limited, comparing with OMM methods. On the other hand, although OMMSide has the highest average PnL, its average execution time is also the largest which means it is exposed to more market risk. Further more, in consistence with common scense, OMMSide is more likely to touch SL and TTE limit than OMMMid, since it sets a more 'opportunistic' limit price.

About Author

Nan(Lainey) Liu

Nan(Lainey) is a master student at New York University studying Financial Engineering. She is passionate in the applications of machine learning technique in financial industry eg. High-Frequency Trading, Option Pricing. Nan developed a shiny app to research on...
View all posts by Nan(Lainey) Liu >

Related Articles

Machine Learning
Ames House Prices Predictions
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
Data Visualization
Beyond the Podium: A Global Journey Through Formula 1 History
Meetup
Building a Safer Future
Meetup
New York Restaurants: Inspection Data Analysis, Statistics and More - R Programming Language

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application