NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Analysis of TripAdvisor Review Analysis: MGM Grand Hotel and Casino

Analysis of TripAdvisor Review Analysis: MGM Grand Hotel and Casino

Raymond Atta-Fynn
Posted on Jul 30, 2019

Introduction

Data shows that customer reviews are some of the most useful tools that a consumer can use to gauge the quality of a product or service, and more specifically the overall customer satisfaction.  To purchase a product or use a service without checking reviews is like playing Russian roulette with your wallet and your sanity (I learned this the hard way!).

My motivation for choosing this topic is two-fold: (i) I recently had a not-so-pleasant experience with Airbnb partly due to the fact that I did not read enough reviews, and (ii) my friends and I would like to visit the MGM Grand Hotel and Casino when I complete this Data Science program at the end of September.

The MGM Garden Arena is well known for hosting marquee events such as world championship boxing and music concerts by top performing artists, and that is one of the many experiences that my friends and I would like to have. It would be nearly impossible to read the thousands of reviews on the MGM Garden Arena that you can find on the web.

I intend to limit my focus on the reviews submitted at one popular website: TripAdvisor.com. To provide a comprehensive perspective on the overall customer experience, the focal point of my analysis will assess customer sentiments (i.e. the reviews) as well as identifying other relevant factors such as the peak and low occupancy periods of a given year.

No single review (or even a few reviews) can sufficiently capture the customer's  experiences at a hotel.  Thus the objective of this exercise to provide  a majority sentiment of the MGM Garden Arena based on recent and past data so that a consumer may use it to make an informed decision on a future visit.

 

Web Scraping Approach

The data was scraped from the MGM Grand Hotel and Casino page on TripAdvisor.com (link here: https://www.tripadvisor.com/Hotel_Review-g45963-d91891-Reviews-MGM_Grand_Hotel_and_Casino-Las_Vegas_Nevada.html). The following data was scraped: (i) customer review title; (ii) customer review comments; (ii) date of stay; (iv) overall rating on a scale of 1 to 5 (1 is terrible, 2 is poor, 3 is average, 4 is good, and 5 is excellent). Figure 1 below is representative of configuration containing all the data that was scraped.   

Figure 1: Screenshot of a typical customer review configuration.

 

A total of 14,268 reviews spanning the period from September 2014 to July 2019 were scraped. A python script based on the selenium web driver was employed. The script and data are publicly available on GitHub (https://github.com/rattafynn/WEB_SCRAPING_PROJECT).  Python and R tools were employed to analyze the data.

 

Results and Discussions

I. Quantitative Analysis of Reviews: Figure 2 depicts the percent distribution of all the review ratings. Per the figure, the 5-star and 4-star ratings comprise approximately 35% and 25% respectively; the 3-star rating comprise approximately 18%. Thus average (3-star) to excellent (5-star) customer experience constitute 78% of all the reviews, implying that the overall customer experience is above average (the mean rating is 3.6 stars). 

Figure 2: Percent distribution of ratings over all 14,268 reviews.

 

Figure 3 depicts the distributions of all the reviews over all twelve months. In addition, the bar for each month is stacked with the distribution of the reviews corresponding to that month. Since the dates correspond to the date of stay, it is immediately apparent that the MGM Grand attracted the most visitors in the month of July over the 2014-2019 period.  This is followed by the August-October months.  This information is important to visitors who, for example, do not like crowds and want to avoid visiting when the total visitor population is high.

 

Figure 3: Distribution of ratings for each month.

 

An examination of the variations in the ratings for each month in Figure 3 indicates that the 4-star and 5-star ratings constitute more than 50% of the ratings for a given month (in the overall case in Figure 2, the 4-star and 5-star rating constituted 60% of all the ratings). The variations in the 1-3 star ratings appears to be fairly uniform across the various months.

To further investigate if there are significant differences in rating distributions for each month, we examined the case of July and February in Figure 4; these are the months with the most and least visitors respectively. The figure shows that the ratings distributions for July and February are fairly consistent with each other. In addition, they are both consistent with Figure 2. Thus, the global distribution of reviews in Figure 2 is a good representation of the reviews for each month.

Figure 4: A side by side comparison of the ratings distributions for July (month with the most visitors) versus that of February (month with the least visitors).

 

II. Text Analysis of Reviews

The analysis of the words in the reviews was based on a N-gram analysis, which essentially is a frequency analysis of a continuous string of N words in a sentence or phrase: a single word analysis is a unigram analysis; a two-word analysis is a bigram analysis, and a three-word analysis is trigram analysis. The number of times a word or a string of words occur in a text is known as the term frequency (or frequency for short). Obviously the analysis can be carried out for an arbitrary value of N.

Here the focus will be on the trigram analysis of the words in the customer reviews because they best reveal customer sentiments. To further qualify the text, the trigram analysis was performed per each rating. More specifically, trigram analysis for 1-star and 5-star ratings are presented here. Figure 5 depicts the trigram frequency plot and associated word cloud for all 1-star rating.

As expected, a fair amount customers who gave this rating vowed that they "will never stay" at MGM hotel again. They also expressed their displeasure with the front desk. Other minor complaints included hot water shower issues and room smell.

Figure 5: Top: trigram frequency analysis of 1-star customer rating comments. Bottom: corresponding word cloud of the trigrams in the top figure.

 

Figure 6 depicts the trigram frequency plot and associated word cloud for all 5-star rating. The 5-star rating was the dominant rating (see Figure 1) and this can be seen in the overly positive expressions in the trigrams. Customers characterized the hotel staff as helpful and friendly; they also characterized the hotel as a great place to stay. These trigrams were similarly seen in the 4-star rating analysis.

 

Figure 6: Top: trigram frequency analysis of 5-star customer rating comments. Bottom: corresponding word cloud of the trigrams in the top figure.

 

Conclusion

MGM Grand Hotel and Casino attracts the most visitors in July-October (peak visitation is in July)  and the least number of visitors in November-February (the least number of visitations occurs in February). The 4-star and 5-star reviews dominate all the reviews (they constitute about 60%) of the reviews. As expected, customers who gave 5-star ratings seemed very pleased with their experience.

Customers who gave 1-star ratings had a fair amount of complaints ranging from the front desk staff to hot shower baths. Overall, the analyses suggest that visitors to the MGM Grand Hotel and Casino expressed an above-average or fairly positive experience.

 

Future Work

This exercise will be improved in the near future as follows:

(i) Data collection will be expanded to include several hotels and casinos along the Las Vegas strip so as to compare and contrast a much broader customer experience on a much broader scale.

(ii) A thorough customer sentiment analysis of the data in (i) above will be carried out in addition to what was presented here; this includes the level of polarity (specifically overly positive, positive, neutral, negative, and overly  negative) and emotional analysis which aims to identify emotions in the expressions used by customers.

The skills the authors demonstrated are taught in NYC Data Science Academy's Data Science with Machine Learning bootcamp.

About Author

Raymond Atta-Fynn

View all posts by Raymond Atta-Fynn >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application