NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Using XGBoost's Data to Predict House Prices

Using XGBoost's Data to Predict House Prices

Tyrone Wilkinson
Posted on May 4, 2021
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

LinkedIn | GitHub | Email | Data | Web App | Notebook

Introduction

“Location, location, location.” The likelihood that you will hear that phrase if you are looking into purchasing a house, apartment, condo, or timeshare, is .9999999999. (Yes, I performed that data study myself.) However, there are many other factors that contribute to the price of real estate, some of which do not relate to the quality of the house itself -- like the month in which it is sold.  Additional factors include the unfinished square feet of basement area. Location itself can be applied in ways that people do not necessarily anticipate, as well, like the location of the home’s garage. 

All the variants can add up to hundreds of features. Accordingly, arriving at the correct sale price involves some advanced statistical techniques. Who would want to sit down with paper and pencil to determine how all of those features interact to produce a home's market value? Not me, and I was only working with 79 features. This is where computers help run through calculations that would take far too long to work out paper, but we do need to set them up by training them with models. The challenge of this exercise was selecting the best model to use to predict a home price. 

 

Objective

I was tasked with predicting the house prices given a combination of 79 features. I did so mostly following the data science methodology. Using the sklearn.metrics module, I managed to attain the following metric scores in my train-test split: 

Mean Squared Error 395114426.0445745

Mean Absolute Error 13944.044001807852

R-Squared 0.908991109360274

However, my Kaggle submission was evaluated on Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted value and the logarithm of the observed sales price. My score was 0.13244.

Mean-absolute-error is likely the easiest to interpret of the above metrics, being “the average of the absolute values of the errors” (Root-mean-square deviation - Wikipedia). Basically, my model can predict the price of a house within $13944.05.  

 

Process

Using XGBoost's Data to Predict House Prices

Data Science Methodology

I will provide a simplified overview of the steps I took in order to reach my desired outcome. Feel free to visit my GitHub for a more thorough dive.

 

Business Understanding

This step determines the trajectory of one's project. Although my undertaking was purely academic in nature, there are conceivably several reasons why a similar goal would be made in the “real world.” Perhaps an online real estate competitor entered the fray that offered more accurate home value estimates than Zillow does. Not wanting to lose market share, Zillow desires to revamp its home valuation model by utilizing features it had previously ignored, and by considering a wider array of data models. In any case, the objective is fairly straightforward.

 

Analytic Approach

The approach depends on the goal. Since I must predict sale prices, I know that predicting quantities is a regression problem. If I were predicting labels or discrete values, I would have to utilize classification algorithms. There are different types of regression models. I know that tree-based regression models have typically performed well with similar problems, but I will have to see what the data looks like before I decide. Ultimately, I will evaluate different models and choose the one that performs best. 

 

Data Requirements & Data Collection

The data has already been provided. If that were not the case, I would have to define the data requirements, determine the best way of collecting the data, and perhaps revise my definitions depending on whether the data could be used to fulfill the objective.

 

Data Understanding

This step encompasses exploratory data analysis. Reading relevant information about the data and conducting my own research to increase my domain knowledge were also necessary, as I did not perform the Data Requirements and Data Collection steps myself. The documentation that accompanied the dataset proved useful as it explained much of the missingness. 

According to the paper (decock.pdf), the dataset describes “the sale of individual residential property in Ames, Iowa from 2006 to 2010.” Its origins lie in the Ames City Assessor’s Office, but its journey from that office to my computer was not direct. It had been modified by Dean De Cock, who is credited as the individual who popularized this dataset for educational purposes with hopes to replace the Boston Housing dataset, and then again by the community at Kaggle, the website from which I downloaded the data.

My work can be viewed in the Jupyter Notebook I created for this project (give it a few minutes to load). Here are some of the descriptive statistics I performed:

In order to view the feature distributions, I created histograms of the numerical and continuous features and viewed the count distributions of the categorical features.

Continuous Features:

I visualized the missing values present in the dataset then examined the relationships between the missing values and the sale price of the houses.

 

Correlation among the values with a heatmap.

Using XGBoost's Data to Predict House PricesUsing XGBoost's Data to Predict House Prices

 

I also examined the presence of outliers. Throughout this process I noted observations and potential steps I might take when I prepared the data.

 

Data Preparation

During this stage, missing values, skewed features, outliers, redundant features, and multicollinearity are handled, and feature engineering is performed. As mentioned before, the documentation explained much of the missingness, removing the need to impute any of the missing data. I handled the missing values, removed some outliers, and encoded the categorical features. Dummy encoding was used for the nominal data and integer encoding for the ordinal data. Tree-based models are robust to outliers, multicollinearity, and skewed data, so I decided to utilize those models in order to avoid altering the data further.

Outliers visualized:

Using XGBoost's Data to Predict House Prices

 

Modeling

These stages go hand-in-hand, given that multiple models are generally created, and the one that performs best is chosen. In light of the large number of features, a tree based regression model would be better suited compared to something like linear regression. I decided to utilize the XGBoost Python library due to its known advantages over the Gradient Boosting and Random Forest algorithms in the scikit-learn library. I then used Grid Search to determine the best parameters to use in each model. 

The XGBRegressor took: 4162.4min to complete while the XGBRFRegressor took 8049.0min.

Interestingly enough, the top features were First Floor in Square Feet and Lot Area in Square Feet for the gradient boost model, and First Floor in Square Feet and Ground Living Area in Square Feet for the random forest model. The scoring metric used was negative root mean squared error. The top features using the R2 was Ground Living Area in Square Feet followed by Overall Quality, which rated the overall material and finish of the house.

Evaluation

While I was surprised that Overall Quality was not at the top, the importance of features that measured the size of the house were in line with some of my expectations (look here and here). In other words, increasing the size of one's house will most assuredly increase the value of one's house.

I interactively explored my best performing model with ExplainerDashboard, an awesome library for building interactive dashboards that explain the inner workings of "black box" machine learning models. My web app, a stripped-down version of the dashboard, can be found here.

I used Heroku, a free cloud application platform to host my web app, alongside Kaffeine to keep it running. If that link does not work, you can go to my notebook and scroll to the bottom to view the dashboard. You can also visit my GitHub for the complete experience. My favorite feature on the dashboard is the ability to adjust the values of features and then generate a predicted house price. Doing so provides a more granular understanding of how variables affect the final price. However, the library comes with a number of other unique visualizations and features. 

data

data

data

 

Conclusion

Experimenting with advanced regression techniques on real data in order to create an accurate predictive model was an informative experience. Zillow makes billions a year, which indicates that such models are valuable tools.

About Author

Tyrone Wilkinson

| Data Scientist | I love tackling interesting problems. With a degree in Computer Science from Columbia University and background and IT experience spanning over 5 years, I now leap into AI. Contact me if you want to...
View all posts by Tyrone Wilkinson >

Related Articles

Capstone
Predicting the Unpredictable: Revolutionizing E-commerce Delivery with Machine Learning
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application