NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Python > CoverSpy: Adventures Scraping Twitter and Tumblr

CoverSpy: Adventures Scraping Twitter and Tumblr

Katie Critelli
Posted on Aug 7, 2017

Introduction
As an avid reader and a nosy onlooker, my goal for this project was to answer the following questions: What are Americans reading across different cities? How greatly do reading choices differ by city and even by local environment? Can demographic and personal information on the readers be identified?
Although libraries, bookstores, and online retailers release general information on their most popular books, this project utilized a new and unique data source: Coverspy. Coverspy is a twitter page that encourages average citizens to become subway voyeurs and report what those around them are reading. A typical post includes the title of a book, author, and description of the reader (including location). Coverspy is an interesting source of information not only because it displays a snapshot of the popular authors and books at a period of time, but it is highly location-specific and descriptive. Because of the popularity of the New York City Coverspy page, twitter accounts have opened for other cities, including Boston, Chicago, Washington DC, and Barcelona.

Methodology
In order to obtain the desired information from Coverspy, I used the Selenium package in Python to obtain the following information from the Coverspy pages for New York City, Boston, and Chicago: Book title, Author, Timestamp (later discarded) and Description. The github link below contains further code used for the project:
https://github.com/KCritelli/Web_Scraping/tree/master/Scraping_Project_Files
The greatest limitation with the Coverspy data was that there were not very many observations to work with. For each city, there were roughly 800 entries, some of which were incomplete (for example, the viewer did not see the book title, only the author). Nevertheless, the results obtained were interesting and provided preliminary answers to the questions posed at the beginning of the project. As more entries are added to the Coverspy page, it will become a more interesting page to scrape.

Results

My first goal was to compare the most popular book titles and authors on the subways/metros of different cities. Acknowledging relatively few entries for each city, the results suggest that Americans in New York, Boston, and Chicago read quite differently. For example, the most popular author in identified by Coverspy New York was Zadie Smith- yet, she did not rank in the top 12 in either Boston or Chicago.

Top Authors in New York   Top Authors in Boston   Top Authors in Chicago
Rank Author Views    Rank Author Views    Rank Author Views
1 Zadie Smith 12 1 Gillian Flynn 8 1 Erik Larson 10
2 J.K. Rowling 11 2 J. K. Rowling 7 2 Anthony Doerr 6
3 Neil Gaiman 11 3 Cheryl Strayed 6 3 George R. R. Martin 6
4 Haruki Murakami 10 4 Chimamanda Ngozi Adichie 5 4 Gillian Flynn 6
5 Margaret Atwood 10 5 George R. R. Martin 5 5 Michael Chabon 6
6 Stephen King 10 6 Jojo Moyes 5 6 Stephen King 6
7 Chimamanda Ngozi Adichie 9 7 Diana Gabaldon 4 7 Chimamanda Ngozi Adichie 4
8 Paul Beatty 9 8 Donna Tartt 4 8 David Foster Wallace 4
9 George Orwell 7 9 Haruki Murakami 4 9 Haruki Murakami 4
10 Hanya Yanagihara 6 10 Lee Child 4 10 Liane Moriarty 4
11 Elena Ferrante 5 11 Malcolm Gladwell 4 11 Michael Crichton 4
12 Liane Moriarty 5 12 Stephen King 4 12 Michael Lewis 4

After examining title and authors breakdowns by city, I pooled the results for different cities and compared reading patterns for men and women. Although there were far more data entries for women than men (1054 observations of women versus 688 observations of men), the most interesting result turned up in the list of top authors read by men:

 

Men: Top Authors
Author Views
1 Stephen King 12
2 Gillian Flynn 7
3 Neil Gaiman 7
4 George Orwell 6
5 George R. R. Martin 6
6 David Foster Wallace 5
7 Haruki Murakami 5
8 Malcolm Gladwell 5
9 Cormac McCarthy 4
10 Erik Larson 4
11 Hanya Yanagihara 4
12 Michael Lewis 4
13 Andy Weir 3
14 Ayn Rand 3
15 Bill Bryson 3
16 Dan Simmons 3
17 Daniel Kahneman 3
18 David Mitchell 3
19 Frank Herbert 3
20 Fyodor Dostoevsky 3

 

Interestingly, while the top authors read by women were spread evenly across genres and gender, male readers tended to heavily favor male authors (17 of the top 20 authors for male readers are also male). Although further research would need to be done, this data heavily suggests that men tend to read very differently from women, perhaps more narrowly.

To further investigate reader demographics, I produced a histogram of observations by age on the New York City subway. I found that the vast majority of observed readers are in their twenties, with counts decreasing steadily by age.

Finally, I decided to use the reader descriptions to create word clouds based on location. Word clouds are plots based on word frequency: in this case, the most frequent words in the reader descriptions appear as the largest, most centrally-located words. I sorted the descriptions by subway train to see if the readers of New York displayed identifiable "personalities" based on where they were reading. Though this last visualization is highly subjective and mostly for entertainment, I would argue that the readers on the F train (which goes back and forth to Brooklyn) stand out in their description.

Conclusions

On a broad level, this project taught me the importance of working with a large dataset. Although Coverspy is a novel and fun website and it allows viewers to look at many variables in each entry (title, author, reader gender, reader age, reader description), there are not enough total entries to do a highly comprehensive analysis on the results. As a result, I focused on displaying the information of interest in creative ways and highlighting surprising conclusions about readers patterns across cities, within New York, and across demographics. In the future, I hope to continue exploring data on how individuals read, what titles and authors are popular where, and eventually...what predictions can be made with this information?

About Author

Katie Critelli

Katie graduated from the University of Pennsylvania with a Bachelor's degree in Neuroscience and an Honor's thesis focused on protein-modeling in neurodegenerative diseases. She worked previously at Booz Allen Hamilton in the military healthcare division. Katie has joined...
View all posts by Katie Critelli >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application