NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R Shiny > Yelp Yep

Yelp Yep

Tingting Chang
Posted on Mar 13, 2017

Contributed by Tingting Chang. She is currently in the NYC Data Science Academy 12 week full time Data Science Bootcamp program taking place between Jan 9th to March 31th, 2017. This post is based on her first class project - Shiny (due on the 4th week of the program).

About Tingting Chang: GitHub | LinkedIn

Introduction

In this project, the app aims to identify the key features for people in Phoenix to give score on Yelp. Using the Yelp Dataset from Yelp Dataset Challenge, the app compares the influence of some attributes in the dataset based on the category. In particular, the app analysis every attribute to the appearance of hipsters in order to find out whether the ambiance of hipsters will affect the average score of the store.

A brief show case

A brief show case, click to view

Data Set

According to the description of Yelp Challenge, this dataset includes:

  1. 4.1M reviews and 947K tips by 1M users for 144K businesses
  2. 1.1M business attributes, e.g., hours, parking availability, ambience.
  3. Aggregated check-ins over time for each of the 125K businesses
    200,000 pictures from the included businesses

It includes 11 cities such as: Edinburgh in U.K., Karlsruhe in Germany, Montreal and Waterloo in Canada, Pittsburgh, Charlotte, Urbana-Champaign, Phoenix, Las Vegas, Madison, Cleveland in U.S.

The whole dataset is composed by five json files: business, checkin, review, tip, and user file. By using ndjson  package, we read data as a data frame. The app only joins the business and review files by business_id in order to get the all business attributes, review counts, star rating.

Screen Shot 2017-02-04 at 9.34.38 PM

data sample

Data summary

Data summary

Exploratory Data Analysis

From the graph of category and total reviews, we can see that restaurant's Yelp strongly influences an individual's dining decisions. So the app mainly focus on the stores provide foods.

 

The Yelp Dataset comes from the Yelp Dataset Challenge webpage. Our project only focus on the Phoenix so we filtered out other countries and states. This left us with 10,629 businesses. I inner joined the business and review table so I have 10,629 observations and 116 variables. In order to directly find out the type of store has the most ambience of hipsters, I also filtered out all non-restaurant business and build a subset dataset restaurant.

Screen Shot 2017-02-04 at 9.39.33 PM
From plotting, I find out that there are some features corresponding to high star rating include๏ผš review count, noise level, outdoor seating, classy ambience, hipster ambience, good for kids, good for groups, divey ambience, garage parking, and has TV. For most of the plotting, the app shows that stores that provide food have more count and the average stars in the range from 3.0 to 4.5.

Screen Shot 2017-02-04 at 8.58.09 PM

 

Screen Shot 2017-02-04 at 8.58.22 PM

One of the interesting things from the data is that for stores that good for kids category, Hair Salons and Active Life shows a outstanding high score which makes lots of sense since many parents especially moms would always go to those places and they need to take care of their children at the same time. If those places have good environment for kids such as day care center, it is not difficult to imagine how much work they will save for moms. The same situation also happens for the Garage Parking in Hair Salons. The data shows that the hair salon stores provide garage parking will always receive higher scores. Those results also let us start to think that the business area which provide service can get a higher score if they keep making customers more convenient by providing parking plot and better environment for kids, etc.

 

Who are hipsters?

According to the Google translator, a hipster is:

a person who follows the latest trends and fashions, especially those regarded as being outside the cultural mainstream.

Hipsters are those people who walk around town as a beard-and-glasses with plaid shirts, listening to new-ish music and seeking status. For some reasons, many people hates hipsters. The Yelp data I have also take this into consideration when rating a store. I specifically do some plotting and try to find out whether the ambience of hipster will influence the rating of the store. It turns out that hipster independently would not affect the lower rating at all. However, one of the interesting thing is that hipster would normally show up in the food, bars, American restaurants. They seldom go to the Asian restaurant except the fusion bars which is much similar with American style bars. Also, I find out hipsters are not the main source of the noise. So in my opinion, it is unreasonable to discriminate against them. Even more, take the ambience of hipster into account of score ranking itself is a discrimination.

 

 

hipster1

hipster4

Why people hate hipsters?

Quora says that people hipsters for different reasons.

> The recent movement of hipsterius civilatus (family name) comes from young middle- and upper-class citizens who are creating their own counter-culture movement. The reason for the hate is because they are generally seen as spoiled, have a certain categoric smugness to themselves.

> Society's perceptions of youth culture (in other news, see: rock and roll, disco, hippie, grunge, yuppie, emo, punk, and so on)

> Certain key attributes and attitudes that hipsters are seen to have, which include; vegetarianism or veganism, concern about the environment, anti-capitalist, anti-consumerist, a strong love for independent music and movies.

 

Data Analysis related to hipsters

A interesting result is that hipsters seldom shows up in the Asian restaurant except some Asian Fusion store from data. The data shows that hipsters more into bars, Gastropubs, American food, Mexican food, Pizza, Sandwiches, Burgers, Art & Entertainment.

Screen Shot 2017-02-04 at 8.57.42 PM
The app also can let us pick two attributes to see the relationship between two attributes. From the Mosaic Plot, the app shows that places provide the outdoor seating will have more chance of ambience of hipsters.

Screen Shot 2017-02-04 at 9.01.11 PM

A strange finding is that the histogram shows that hipsters are fond of the place that good for groups, however, it does not show anything from mosaic plotting. A counter example is noise level and the ambience of hipster, both bar charts and mosaic plot shows that there is not any direct relationship between them. I cannot explain now why the result from mosaic plot and bar charts is different. But I am sure there must be some statistic insights about how we evaluate the relationship between these two attributes in different type of plotting. Moreover, mosaic plot tells us that hipsters like to hangout in the place with the price range from 1 to 3. Also, the data shows that places provide outdoor seating are not good for kids at the same time.

 

Screen Shot 2017-02-04 at 9.23.40 PM

Screen Shot 2017-02-04 at 9.23.40 PM

 

 

The app specifically compares the ambience of hipsters and ratio of other business attributes such as food good for group, noise level, good for kids, outdoor seating, credit card usage, divey, garage parking, has TV, price range, take out option, reviews count. Regard to the noise level, one of the interesting thing is that hipsters has nothing to do with the noise level which is the opposite to the most people's expectation. For example, as for Arts & Entertainment category, we can see that if there is hipsters the noise level is high but if there is not any ambience of hipsters, the noise level is higher than without hipsters show up. Another example is that Seafood category, we can see that without hipsters, Seafood store is much quieter than the ambience of hipsters. So we cannot sure that hipsters will bring up the noise level precisely. In addition, hipsters seems like stores with outdoor seating. They also seems into divey and place with garage parking.

Screen Shot 2017-02-04 at 9.24.51 PM

Screen Shot 2017-02-04 at 9.25.00 PM

Screen Shot 2017-02-04 at 9.24.40 PM

Maps

The app shows two maps. First of all, the map marks the place where has the ambience of hipsters. The pop up can tell you the place's name, address and score. If you really are not a fan of hipsters, you can avoid them. Or if you like me who really do not mind, you can use it as a ranking reference. Besides, if you are a potential hipsters or big fan of hipsters, welcome to go to those place and make friends with them.

Screen Shot 2017-02-04 at 9.31.32 PM

 

 

Future work

In the future, I plan to build a social network between all users and their friends so that I can build a small recommendation system based on their common tastes.

 

About Author

Tingting Chang

Tingting Chang got her master degree in Computer Science from the George Washington University. She is a self-starter and hardworking data scientist well equipped with data analytics skills to obtain actionable insights from massive datasets without losing sight...
View all posts by Tingting Chang >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application