NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Alumni > Alumni Spotlight: Pokman Cheung, contributed by CourseReport.com

Alumni Spotlight: Pokman Cheung, contributed by CourseReport.com

claire.tu
Posted on Aug 31, 2015

This alumni interview was conducted by Liz Eggleston from Course Report.

With a PhD in Mathematics, Pokman Cheung was no stranger to quantitative analysis, but he wanted to transition into a new career as a Data Scientist, so he enrolled in NYC Data Science Academy to get a grasp on the practical aspects of data science and machine learning. We sat down with Pokman to learn about his experience at the data science bootcamp, the diverse backgrounds of his classmates, and how he landed his new job at Goldman Sachs London!

Pokman also contributes to the NYC Data Science Academy blog- check out his post on Facial Image Analysis. 

 

What were you up to before you started at NYC Data Science?

I had obtained a PhD in mathematics from Stanford, and held academic positions at MIT and Sheffield. However, I decided recently to pursue a new career direction in or related to data science.

Did you have a technical background before you applied? Had you taken a CS/math class, tried Codecademy or another online platform?

I didn't have any relevant technical background from previous work experience. Before applying for the Bootcamp, I had taken several online courses from Coursera and edX on data science and programming. While they provided good overviews of the subjects, I realized that I needed to find another way to gain a deeper understanding and some practical experience.

What was your goal in doing the NYC Data Science Academy bootcamp?

My goal was to get a deeper understanding and some practical experience in data science and machine learning, in order to be able to find a desirable data scientist job.

Why did you choose NYC Data Science? What factors did you consider? Did you look at other bootcamps or only NYC Data Science?

I have looked into similar courses. NYC Data Science Academy appealed to me the most mainly because of their comprehensive and practical curriculum, and their strong industry connections.

What was the NYC Data Science application like for you?

The application consisted of some coding problems and a phone interview. It helped me confirm that I am a good fit for the course, and understand what I am expected for and I can expect from the course.

How many people were in your cohort? Did you think it was a diverse cohort in terms of age, gender, and race?

There were 18 students. This is perhaps the most diverse group of people I have ever studied or worked with, certainly in terms of age, gender and race, but also especially in terms of background and experience. While everyone possessed at least the required technical level, the diversity in background and experience enabled many meaningful and fruitful interactions between the students.

Who were your instructors? What was the teaching style like and how did it work with your learning style?

Vivian, the founder of the Data Science Academy, has vast knowledge of the data science industry and a highly practical perspective. Her ability to share such knowledge and perspective, in the form of class lectures and detailed individual feedback, was in my opinion her greatest value. The other instructors came from such background as healthcare industry, Google and academia. They all share Vivian's practical and interactive style, with particular strengths in various aspects of data science.

What technologies did you learn in your course? Were you able to learn it all in the short time you were in your program?

The course covered various tools and techniques in data extraction (including web scraping), data cleaning, visualization and machine learning. These tools and techniques are mostly implemented in the languages of Python and R. It was a large amount of material, but the instructors made sure that we were able to absorb all of it through well-designed homework assignments, projects and discussion sessions.

Were there exams/assessments? What happened if you failed one?

There were daily homework assignments and four projects throughout the bootcamp, but no exams. We were given extensive feedback on our work.

Are there things you didnโ€™t expect or that you would change?

The bootcamp met, and in some aspects exceeded, my expectations. In retrospect, I would like to have done a little more preparation beforehand in order to even more fully take advantage of the entire experience. The teaching and administrative staff constantly encouraged and responded to students' feedback. In particular, a student-staff meeting -- nicknamed `therapy session' -- was held every Thursday, and any useful ideas and suggestions brought up in the meeting would often be incorporated starting as soon as the following week.

Can you tell us about a project you worked on? What type of data set did you work with, which technologies did you use, what did you find out/discover, did you work on it alone or with a group, is it live now?

After having learned a fair amount of machine learning, the students were divided into teams of four or five and each team started working on a Kaggle competition of their choice. My team chose a competition posed by Ponpare -- Japan's answer to Groupon -- whose goal was to predict the coupons purchased by each user within a one-week period. The provided data included details of the users, details of the coupons, and all the transactions within the previous 51-week period.
Our initial attempt was to train a coupon classifier for each user using some classification method  (e.g. neural network, support vector machine). However, poor properties of the resulting models led to the realization that our approach was inadequate in such a situation, where no user would purhase any more than a tiny fraction of all the available coupons.

The approach we eventually adopted was based on quantifying how similar two coupons are using cosine similarity. To achieve an optimal model, we utilized such techniques as feature transformation and cross validation. Our highest score once ranked 7th on the leaderboard.

What was the most challenging part of the course?

I found the projects to be the most challenging but also the most important part of the course, because they required us to not only utilize everything we had learned, but also find or choose our own methods.

Did NYC Data Science do job prep with your class- interview practice, resume building etc?

The NYC Data Science did a great deal to help the students find jobs. Throughout the bootcamp, they invited many industry experts to give talks and provide advice on job application. In the meantime, they also gathered and organized our coursework into personal profiles, which they used to promote us as candidates for suitable openings. Towards the end of the course, there were even more career-oriented activities like 'elevator pitches', meetups with recruiters, interview practice, and resume consultation.

What are you doing now- did you move up in your career or get a new job?

I will start a new job in September, working in the risk management department at Goldman Sachs London. This will be my first job in finance, with a significantly higher salary than my previous jobs in academia.

I started applying for jobs some time before starting the bootcamp, but only received an offer in the middle of it. The bootcamp was useful for my interview preparation, and also gave a positive impression of me to employers.

How long did it take to get the job at Goldman Sachs?

My job application started in February and last until July, a month after the bootcamp started.

Did you feel prepared for the interview with your current company? What is a Data Science role interview like?

I felt well-prepared for the interview. The final interview lasted for a whole day. It consisted of a presentation of a past project and meetings with five people. Besides the typical motivational questions, I was also asked a variety of technical questions, covering such topics as statistical inference, regression models, algorithms and codes, as well as some actual problems arising in my interviewers' work.

Was NYC Data Science worth the money? Would you recommend it? Could you learn that on your own?

I think so. The main values of the bootcamp are: (i) the instructors' knowledge and perspective in the industry, e.g. concerning which ones of the vast number of available tools and techniques are more important than others, (ii) the opportunity to interact with many established data scientists, and (iii) the experience of working on real-world data science projects with guidance from the instructors and collaboration with fellow aspiring data scientists.

About Author

claire.tu

View all posts by claire.tu >

Related Articles

Capstone
Finding the Best Liquor Store Location in Iowa
Data Visualization
Data of Home Constructions in the US and Future Outlook
Alumni
A Journey from Data Science Student to Manager | Pfizer
Alumni
Breaking into Data Science in 2019
Data Visualization
Data Science Industry: The Secret To Success

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application