NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Alumni > Alumni Spotlight: Aravind K R, Data Scientist, Jio

Alumni Spotlight: Aravind K R, Data Scientist, Jio

claire.tu
Posted on Jun 8, 2016
This article is contributed by CourseReport, a third party website specialized in covering bootcamp stories.

Aravind is no stranger to statistics and analytics - he has a Master’s degree in Statistics from Columbia and has been working as an Analyst at a global investment firm building statistical models. But Aravind wanted to strengthen his programming and machine learning skills, so he considered his options and chose NYC Data Science Academy to take his skillset to the next level. Aravind candidly answers all of our questions about why he chose a data science bootcamp over a second Master’s degree, his final projects, and how data science skills have made him a better analyst.

Q&A

What were you up to before you decided to go to NYC Data Science Academy?

I didn’t attend NYC Data Science as a typical “career switcher.” Instead, I was mostly interested in gaining new skillsets quickly. Bootcamps offer an intense curriculum, but at the same time, are shorter than traditional options.

I already have a background in statistics and have been working for an investment firm as an analyst. I worked with different groups at the firm doing statistical modeling, but I didn’t have as much machine learning and programming experience. That’s what drove me to NYC Data Science Academy.

So you wanted to move up in your career, not change your career?

Yes. I could have continued as an analyst, but data science is a skillset that is designed to solve real world problems using data driven methods. It requires a strong understanding and domain knowledge of programming and statistics, and that was my goal.

Once you decided that you wanted to learn those programming and machine learning skills, how did you research your options?

I had two other options, which weren’t bad, but had their downfalls in that they were time-consuming and expensive. First, I could use online courses. The content in machine learning courses on Coursera is very good, but it can take over 8 months to complete a set of courses.

I also considered doing another Master’s degree, but I would be out of work for a long time, and about 30 to 40% of the coursework would overlap with my Statistics Master’s degree. So I decided that a bootcamp was the best option.

How did you decide between NYC Data Science Academy and other data science bootcamps in New York?

I was already familiar with Vivian Zhang’s teaching from her meetup groups, even before she started NYC Data Science Academy. I had applied for the first cohort, but it started in early 2015 and I decided to postpone it for work commitments.

I looked at both The Data Incubator and Metis. The Data Incubator didn’t have a class that started immediately, which I needed. I looked at the coursework at Metis, but they primarily teach Python, and I wanted to learn both R and Python.

I chose the Data Science Academy because of the variety of coursework they offer. We used both R and Python in great detail. Both languages are useful for a data scientist; neither is “better” than the other. I feel that R, for example, may be a great data visualization tool, while Python could be used for analytics and machine learning. At the same time, the latest machine learning packages in R have been promising. Getting exposed to both R and Python was appealing.

At NYC Data Science Academy, were you satisfied with the emphasis on those programming and machine learning skills that you wanted to learn?

There was plenty of material in the curriculum, but we also had a lot of coding sessions where we could sharpen our coding skills. If you really want to become a better programmer, then there is a lot of work that you have to do on your own.

Tell us about the projects that you created while you were at NYC Data Science Academy.

We worked on five projects throughout the camp. We had to complete projects and do presentations, then start on the next project immediately. We were always able to complete those projects in the designated amount of time, but it was very intense.

The projects that we worked on for data visualization were individual projects. The machine learning and capstone projects were group projects.

Can you tell us about your Capstone Project?

My capstone project involved the classification of musical scales. Earlier studies show that songs in different genres can be classified based on signal information. We used classification algorithms to decide whether a particular scale is rock, hip hop, etc. Sometimes you can even classify based on characteristics like whether it’s a minor or major key. Or even more specifically, the mood of the music. For example, there’s a concept called “raga” in Indian classical music with a specific frequency pattern. We fed the computer existing data with what we know about raga, then built a system that automatically classifies music. Companies like Soundhound do a lot of this fingerprinting, which involves a lot of machine learning and digital signal processing.

My Python project was to build a web scraper to collect and analyse rental listings on Streeteasy.

Who was your instructor at NYC Data Science?

Our primary instructor was Christopher, who came from a statistics background. I thought he did an excellent job teaching and communicating each of the algorithms and statistical concepts. He was clear, concise, and effective.

You have a Masters degree in Statistics and have been working with Statistics for the last few years- do you feel like you still learned a lot from Christopher?

I wouldn’t call myself a statistics expert! Even the way Christopher approached simple concepts was interesting. Often with stats, people approach a problem without understanding the conceptual underpinnings behind a particular idea. Chris was able to explain both the mathematical concepts and the conceptual underpinnings.

For example, conceptually, we may say that a t Distribution is “fat tailed” compared to a normal distribution, but Chris would explain why this is so instead of making those basic assumptions.

Did the rest of your cohort have the same background as you? Were there people with different levels of education?

One thing I learned is that at a bootcamp, everyone comes from varied backgrounds. Some students had a Master’s degree in a non-quantitative subject, others had Bachelor’s degrees. Some even had math and physics PhDs- and among those PhDs, some had a theoretical background, while others had programming experience. Those with a computer science background had a small advantage because they had less catch up to do for programming prework.

Everyone had an area that they wanted to improve on. I came from a statistics background, so I was able to focus on topics that I hadn’t had a chance to work on before, like Python.

What was the biggest challenge you faced at NYC Data Science Academy?

During the bootcamp, a bout of flu went around! I had to miss a couple of classes, and then quickly complete a project and present it. I wanted to ensure that the quality of my work didn’t suffer, so I had to work extra hard. I wasn’t sure I could do it, but the support of the TAs was so helpful. Chris made the lessons that I missed available on video. All of those things helped me bounce back and complete two projects really quickly.

What are you up to after graduating in March?

I am with the Asian Markets strategy group that tries to use both qualitative and quantitative strategies for Indian and Chinese Equities. My idea is to contribute to quantitative groups at the company in a better way through machine learning and automation of processes.

Have you gotten to put your new skills to work?

With my programming skills, I’ve been building a tool that takes information from the web about particular news articles about stock. I’m using natural language processing to use that news information in a more seamless way. Plus, my supervisor also feels like those quantitative skills are helping the group.

Were you impressed with the feedback loop at NYC Data Science Academy?

One of the things I have to mention is that Vivian is doing a great job keeping the best aspects of each cohort, and at the same time making sure that each cohort is better than the one before. The feedback mechanism that exists at NYC Data Science Academy is really impressive. I was surprised at the extent to which Vivian valued my opinion as a graduate.

In this new cohort, I made a couple of suggestions, and they have additional hours dedicated to MongoDB and they’re working on a machine learning “defense exam,” which would go with the final project and would be very useful for someone who wanted to prepare for a job. They would get experience with theory and thesis defense, which would give them a better grasp on the subject matter.

What’s your advice to future data scientists who are considering a coding bootcamp?

At the end of the day, you cannot become a data scientist in 12 weeks, so you should learn the most relevant and important concepts. The most important thing is to keep learning after the bootcamp is over. NYC Data Science Academy has made me feel like I can maintain a lifelong commitment to learning.

About Author

claire.tu

View all posts by claire.tu >

Related Articles

Capstone
Finding the Best Liquor Store Location in Iowa
Data Visualization
Data of Home Constructions in the US and Future Outlook
Alumni
A Journey from Data Science Student to Manager | Pfizer
Alumni
Breaking into Data Science in 2019
Data Visualization
Data Science Industry: The Secret To Success

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application