NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Alumni > Breaking into Data Science in 2019

Breaking into Data Science in 2019

Pranjali Galgali
Posted on May 9, 2019

Lukas Frei works as a Data Science Consultant at PwC Germany, helping companies implement data science solutions in tax, legal, and finance. He has a Bachelorโ€™s in Business Administration from the University of Mannheim, a well-known business school in Germany, and he is a graduate of NYC Data Science Academy. His passion for data science first began when he was studying abroad in Shanghai, China. As part of NYC Data Science Academy's 15th cohort, he worked on four major data science projects, including a data science consulting engagement project in New York City.
Hereโ€™s a window into Lukas Freiโ€™s journey from business to data science.

Background

I remember thinking about breaking into data science as if it were yesterday. I had just started my semester abroad in Shanghai and attended several talks and guest lectures about data science and machine learning. However, I had never coded before that point (except for some basic SQL) and I did not really know where to start. Initial web searches resulted in more confusion than insights because there were so many different recommendations for paths to take to become a data scientist. Some sources even suggested that you should not attempt to become a data scientist unless you already have an analytical background.

This article takes a different approach. I am not going to provide a one-size-fits-all path into data science. Instead, I am going to elaborate on my experience of trying to transition to a career in data science. I hope this will help encourage aspiring data scientists, regardless of their backgrounds.


Part 1: Learn How to Code

My very first step was starting to learn how to code. To get a deeper understanding of the data science industry, I decided to enroll in NYC Data Science Academyโ€™s 12-week Data Science Bootcamp. The program includes an online pre-work course that includes online materials, coding challenges, and assessments in Python, R, and SQL, in addition to other languages. The pre-work course has to be completed before starting the bootcamp, and it helped me get a solid foundation which enabled me to succeed in the bootcamp.

Code, Code, Code

Programming is a skill that is acquired by consistent, repeated practice. There are a lot of great books that can help you get started. The ones I used were Learn Python The Hard Way and R for Data Science. Since I had already used SQL, I only had to review the main commands. If you would like a more comprehensive guide for SQL, I would recommend Mode Analyticsโ€™ SQL course.

While learning to code, you will run into many challenges. Keep going. Pushing through and examining your mistakes will be very valuable later on. When practicing Python in Jupyter Notebooks, I documented all of my mistakes so that I would be able to review them. This resulted in a personalized library of code snippets and interesting discoveries that I utilize to this day.

Python or R?

There are many factors to consider when deciding which programming language to start with. If you want to have easy access to a wide variety of tools for statistical analysis, then R is probably the way to go. If you want to learn a more widely-applicable language, Python should probably be your first choice. In my experience, picking a language and just starting to code is what matters most. The best way to find out what language you prefer is by playing around with code, instead of relying on third-party recommendations.

If you want to be extremely versatile, I would recommend learning both Python and R. Luckily, NYC Data Science Academy teaches its entire curriculum in both languages. I personally prefer using Python for machine learning, but I appreciate how easy it is to do data analysis in R using the tidyverse, a collection of R packages designed for data science.


Part 2: Brush Up On Statistics

As a business major, I had taken an elementary statistics course in college, as well as some economics and finance courses. In my opinion, especially in 2019, only knowing how to use machine learning packages, such as scikit-learn, is neither enough to effectively practice data science nor will it be enough to land you a job in data science!

Document Your Progress

In order to organize everything I would need to know, I started creating Word documents with summaries for each topic. There are so-called โ€œCheat Sheetsโ€ readily available online, however, I usually find them to be lacking in depth. As I emphasized earlier, there is no one-size-fits-all solution, and you may prefer to build a customized data science look-up library. I took notes during the lectures at NYC Data Science Academyโ€™s bootcamp and refined and reviewed them at night. While this took a lot of effort, it facilitated my understanding of more complex algorithms as the lectures progressed.

Master the Fundamentals

As a final note on this topic: do not, under any circumstances, skip the basics. While trying to jump to fancy algorithms might seem tempting at first, spending the majority of your time understanding the fundamentals is a better choice. In addition to the lectures, I read several books about statistics and statistical learning. In my opinion, the best book on statistical learning is โ€œAn Introduction to Statistical Learning: With Applications in Rโ€ by Daniela Witten, Robert Tibshirani, and Trevor Hastie. Different books take different approaches. Thus, combining books that focus on a verbal explanation of algorithms with books that dive into the technical details proved to be a good investment of my time.

Ask Many Questions

If you choose to attend a bootcamp as I did, make use of your instructors. Ask as many questions as you can. Do not wait until you run into serious problems to start asking questions. NYC Data Science Academy has great instructors and they are available for you at all times. The Slack channel, TA support, and peer support helped me a lot. Even showing more experienced people your code and asking for ways to improve its efficiency can prove to be extremely useful.

If you are not able to get professional help, do not despair. There are plenty of online communities and resources that will help you answer your questions. Chances are, you are not the first person who has encountered your problem.

Other Things to Brush Up On

Depending on your background, it might be a good idea to review basic linear algebra and calculus. I would recommend either going through your old linear algebra and calculus notes or taking an online course with NYC Data Science Academy. This is particularly important if you are interested in reading academic papers and technical literature.


Part 3: Build a Project Portfolio

This third step is of utmost importance if you want to land a job in data science. Apply what you have learned by trying to complete at least four major projects. This will help convince potential employers that they should hire you.

If you attend the NYC Data Science Academy bootcamp, you will complete three projects and a capstone project. These projects will cover everything from data acquisition to data visualization to machine learning. The capstone project enables you to choose a topic of interest to you. You should use this opportunity to position yourself in the job market and target your dream employers. For instance, if your goal is to apply data science to healthcare, try to find a project that tackles an important issue in the medical field

Do Not Stop There

If you really want to break into a specific industry, you should not stop at four projects. Search for data that might be relevant to your dream employer and experiment with it. Build something interesting and write an article or blog post about your project. The more you showcase your abilities and interest in a specific field, the more likely it is that people in that industry are going to be impressed by you.

Do Not Try to Be Too Fancy

When choosing projects, it is tempting to go for things that sound fancy. Do not do that - at least not right away. Make sure your projects are solid from start through the finish and contain as few errors as possible. Have someone check your projects and review them for you. During my time at bootcamp, I presented all of my projects to my fellow classmates, as well as my instructors. Getting different opinions on your work will help you improve for future projects.


Part 4: Trying to Find a Job

If you want to succeed in the data science hiring process, prepare yourself as much as possible. Check out coding challenges on HackerRank, familiarize yourself with the types of questions being asked, and, perhaps most importantly, document your interview process. Create a document in which you describe and evaluate your experiences from interviews. Then, before each interview, review that document along with your machine learning theory document(s) to help avoid repeating mistakes. Also, take advantage of the mock interviews, coding challenges, and 1-on-1 resume review sessions that NYC Data Science Academy offers.

Learn How to Pitch Yourself

If you want a job in data science, you are going to have to compete with many other applicants. Set yourself apart by creating a personalized narrative. Why are you the perfect fit? Why did you choose your specific projects? Why did you choose data science in the first place? Since you are going to have to introduce yourself in almost every interview, make sure that you craft a strong elevator pitch that can be adapted depending on what company you are targeting.

While you are at it, prepare pitches for your projects, too. Not every potential employer will want to hear you describe all of your projects. Maybe one specific project caught the attention of the people that are going to interview you. Make sure that you are able to describe each project in depth, but also have a backup pitch in case you only have time to provide a short description.

Practice these elevator pitches in front of other people. Thinking of what you might say at home is not comparable to explaining your projects to people you do not know. If you go to school or attend a bootcamp, practice your pitches with your classmates and give each other constructive feedback. Doing so, you might be able to avoid several mistakes during your first interview.

Network

Graduates of NYC Data Science Academyโ€™s bootcamp are encouraged to attend a hiring partner event to interact with potential future employers. Before attending these events, it is absolutely crucial to have learned how to pitch yourself and your projects. Be aggressive when attending such events. Research the hiring managers and recruiters that are going to attend. During the event, try to figure out whether there might be a fit between you and the company as quickly as possible. Hand over your resume and ask for business cards. Another very important piece of advice: do not talk to only one or two people. Even if there is potential for a great fit, do not limit yourself in the number of potential job offers. Thank recruiters after getting to know them and exchanging contact information.

Networking is a skill that takes practice. Luckily, NYC Data Science Academyโ€™s bootcamp provides students with extensive advice and tips on how to navigate networking events. Make sure to know the rules of conduct in networking (e.g. writing a good follow-up email to every hiring manager that was in attendance).

However, as with the projects, do not stop there. Network with the people around you. Data science is a fascinating field with many fascinating people. Connect with your classmates if you are in school or a bootcamp. Find interesting people to follow on LinkedIn. Attend data science meetups in your city. There are many opportunities for networking and the more you do it, the better you will get at it.

Finding a Job Can Be Hard: Donโ€™t Give Up!

You might go to many interviews just to have people tell you they will not be able to hire you. Unless you are lucky and find a job right away, getting hired might turn out to be a very frustrating process. Do not despair. If you keep persevering and improving yourself and your resume, someone will notice eventually. Keep believing that you will get the job offer you want. Talk to people that have gone through the data science hiring process and you will see that many of them have had extremely frustrating interviews.

In Conclusion, Remember:

Becoming a data scientist in 2019 is not easy. There will be many hurdles you will have to jump over and many challenges you will have to overcome. Nevertheless, the rewards of making it through the process are huge. Not only will you get to do what you love doing, but also get to engage with very bright people from all kinds of different backgrounds. Just take the first step and the rest will follow. Start pursuing your passion. Making sure that you steadily improve day by day will ultimately get you where you want to go.



NYC Data Science Academy offers in-person, live online, and remote self-paced bootcamps. Apply to the next bootcamp by June 10 to reserve your seat. Visit NYC Data Science Academyโ€™s social media for the latest news and updates.

About Author

Pranjali Galgali

Pranjali Galgali is a Marketing and Communications Associate, NYC Data Science Academy. She is a Master's in Digital Media and Strategic Communications from Rutgers University. She enjoys reading and writing about data science, upcoming technologies and loves interviewing...
View all posts by Pranjali Galgali >

Related Articles

Capstone
Finding the Best Liquor Store Location in Iowa
Data Visualization
Data of Home Constructions in the US and Future Outlook
Alumni
A Journey from Data Science Student to Manager | Pfizer
Data Visualization
Data Science Industry: The Secret To Success
Capstone
Data Analyzing Horse Racing

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application