Condo Prince R Machine Learning class Final Project

Posted on Mar 26, 2015
The skills we demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

The Meetup this past Tuesday was held in the NYC Data Science Academy space near Grand Central Station. Yi Wang gave a presentation on his machine learning final project. He was part of a machine learning in R class held through the NYC Data Science Academy. His project was to build a model that would predict the value of individual condos along the Hudson in New Jersey. Using data from many different sources, he collected many different data points about each condo and the buildings they were in and used these to build several different models for predicting the value of any given condo.

You can view the slides of his presentation online here.

The Data

The data sources for this project were a combination of public access data as well as data from the civic hacking group Beta NYC. The sale price of all condo purchases are public record and can be found using the search function of NJ MOD IV (the equivalent for NYC is called Acris). For his project, Yi grabbed only the most recent sales, ignoring older ones.

This data was less than clean, however. Some listings had obviously incorrect records, such as a sales price of $10. In addition, the addresses of the condos was a plain text string that had to be deciphered and sometimes unscrambled. In addition, the condo number and floor number could be inferred from the listing.

Sources of other data included the Google Maps API (for computing coordinates associated with addresses). was used to grab the β€œwalkability score” (walking convenience) associated with any condo building by inputting its address. He also used publicly available census data.

In addition to, Yi used the number of units in the building, the year built, as well as the price per square foot of the most recent sale. (This price per square foot value was not differentiated by floor, which the model was designed to take into account.) In addition, Yi calculated the distance of the building from the Hudson waterfront as well as distance from the nearest Path station (the special subway connecting NJ to downtown Manhattan that many use for commuting), since both of these should affect the market value.

After all is said and done, 89% of existing condos were covered in the data, while the rest were presumably lost due to noisy data.

After spending some time modeling without much success, Yi realized his models were inaccurate because he was missing an important value that affected sales price: the view. Some condos had a view of the Hudson and downtown Manhattan to the east, whereas others looked west over New Jersey, the former view being more highly valued. He found floor plans for the condos and assigned each unit a score corresponding to its view: a 2 corresponding to an ideal view, a 1 to a partial view, and a 0 designated a view of nothing special.

In addition, Yi needed some way of taking into account how condo prices changed over time with the market. To do this, he simply used the data he had acquired about the price per square foot and calculated a rough index of how the market developed over time.


The models were designed to predict the current price per square foot of each condo (which is roughly in the $500s). Yi decided to use Partial Least Squares Fit (PLSF) to grade the fit each model had with the data. He used four different modeling methods, some were more accurate than others. He used multi-linear regression, Model Tree, GBM, and Random Forest.

Multi-Linear Regression 99.17
Model Tree 86.64
GBM 90.6
Random Forest 64.50

To produce these models, Yi used his entire data set. To ensure that the models were not overfitting the data, he did a check where training and test data was clearly separated. The models were robust through this check.

About Author

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI