NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Science News and Sharing > Data Visualization on Migration Patterns in Europe

Data Visualization on Migration Patterns in Europe

Diego De Lazzari
Posted on Aug 7, 2016
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

This project attempts to visualize the migration patterns followed by over a million migrants in the last 18 months, by means of an interactive map developed in "Shiny". While offering a dynamic picture of the migration flow through Eastern Europe, from Greece through the Balkans, up to Austria, the project aims at analyzing its composition, in terms of country of origin and gender.

Introduction

According to the United Nations High Commissioner for Refugees (UNHCR), data shows the total number of refugees globally accounted for in 2016, is estimated to 14.5 million people. When internal displacements and "stateless" individuals are considered, the total population of concern reaches a shocking 58 millions, largely located (~75%) in Africa and Asia. While it is hard to conceive such a huge flux of people fleeing war, poverty or persecution in their country of origin, the consequences of such displacements have recently become a central topic of debate within European Union.

Over the last 8 years, more than 1.7 million migrants reached Southern Europe, either through Turkey or crossing the Mediterranean Sea. At the same time, another 2.8 millions registered Syrian refugees are currently located in Turkey. 

Browsing the data in the interactive map

The UN refugee agency is continuously collecting the daily arrivals per country,  allowing a precise mapping of the migration flow and therefore supporting the emergency response plan. While the project focuses on the arrivals, gender and origin recorded between October 2015 and June 2016, the complete database can be found here.
As shown in Fig. 1, the Shiny application appears as a dashboard, where the sidebar is used for the navigation while contents are displayed in the main tab.

Data Visualization on Migration Patterns in Europe

Fig1 - Overview on the Shiny App

The balkan route represents the daily arrivals, combining the visualization of the daily arrivals on a map (either as single frame or as animation) with a time series for each country. As expected, the flow is rather discontinuous, with a number of "spikes" propagating from Greece to Macedonia (FYROM), Serbia, Croatia and Austria.  The flow of migrants splits between Slovenia and Hungary up to mid 2015, when the latter closes the border forbidding any further access. A similar policy is applied on Albania and Montenegro. Despite such limitations the flow does not seem to be stopped. A comparison between the 6 countries  involved, shows basically the same trend.

Data Visualization on Migration Patterns in Europe

Fig 2: Interactive map showing the migration through Eastern Europe. The color bar represents arrivals per day where the date is indicated by the slider on the bottom. The time series plotted below the map allows to compare the arrivals in different countries, while averaging over a given number of days (in picture the series are averaged over 7 days).

As mentioned in the previous section, the second and most dangerous route towards Europe crosses central Africa and the Mediterranean Sea. If the balkan route is quite well defined, both geographically and ethnically, the latter is much more complex, as it entails most north African countries, from Morocco to Egypt, and multiple destinations such as Spain, Malta and Italy.

In the last 18 months, about 100.000 migrants reached the Italian coast mostly from Algeria, Libya and Egypt. Surprisingly, only 25% of the arrivals are refugees while the majority comes from Nigeria, Eritrea, Gambia, Cote d'Ivoire and several other countries. The difficulties and risks associated with the African route have a clear effect on gender distribution: women and children account only for 26% of the total arrivals in Italy, against the 48% estimated in Greece. Overall, both in 2015 and 2016 the number of registered minors resulted larger than the number of women, for a total of 300.000 arrivals.

Data Visualization on Migration Patterns in Europe

Fig 3: Figures at a glance. For a given country (destination), the picture shows the distribution of the migrants by country of origin and gender.

Future steps

Due to the time constraints of the project, the application is mostly focusing on the Balkan route and on "hosting countries". Furthermore, data are dowloaded and processed directly, without exploiting the flexibility offered by the UNHCR API. In the next future the app will be completed by merging the two routes in one single map and updating the underlying statistics in real time. Furthermore, I would like to develop a similar map for the "countries of origin" in order to provide a complete migration pattern, from the country of origin to the actual destination.

Appendix: Developing the Shiny App

In the final section, I will briefly describe the essential steps taken during  the development of the web application.  As anticipated in the title, I used the Shiny Dashboard framework for R

Building the Table

One of the first steps in the development of the app was to build a reactive table depending on two inputs: a chosen dataset and a given number of columns (allowing multiple choices). As the first input influences the available choices for the second input, I used a reactive observer. In contrast with the usual reactive expression (using lazy evaluation), observers execute their content as soon as their dependencies change (i.e. they use eager evaluation).

Maps and time series

Once the datasets is available and processed, the main map was created. In order to achieve that I used the package plotly for the world map and dygraph  for the time series. The latter allows to compare arrivals over time or to visualize a single country over a certain number of periods. The sample frequency (i.e. the smoothness of the curves) can be set by the user.

View Github: Github

Written in R, using R studio. Deployed using ShinyIO.

Packages used:

  • shiny
  • shinydashboard
  • DT
  • xts
  • dplyr
  • tidyr
  • plotly
  • dygraph

Contributed by Diego De Lazzari. He is currently in the NYC Data Science Academy 12-week full time Data Science Bootcamp program taking place between July 5th to September 23rd, 2016. This post is based on his second project - R Shiny (due on 4th week of the program). The R code can be found on GitHub  while the App is stored on Shinyapps.io.

About Author

Diego De Lazzari

Researcher, developer and data scientist. Diego De Lazzari is an applied physicist with a rather diverse background. He spent 8 years in applied research, developing computational models in the field of Plasma Physics (Nuclear Fusion) and Geophysics. As...
View all posts by Diego De Lazzari >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Tracking migration patterns through Eastern and Southern Europe with Shiny โ€“ Browse your web December 28, 2016
[โ€ฆ] Contributed by Diego De Lazzari. He is currently in the NYC Data Science Academy 12-week full time Data Science Bootcamp program taking place between July 5th to September 23rd, 2016. This post is based on his second project โ€“ R Shiny (due on 4th week of the program). The R code can be found on GitHub while the App is stored on Shinyapps.io. The original article can be found here. [โ€ฆ]

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application