NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Capstone > Data Analysis on Watch Brand Movado and Its Retailers

Data Analysis on Watch Brand Movado and Its Retailers

Victoria Lowery
Posted on Jul 5, 2020
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.
  • R Shiny App 

  • GitHub Repository 

  • LinkedIn

Movado requested help in understanding its products' representation and performance across both retailers it has approved and third-party retailers listing unlicensed Movado watches. For my Capstone project, I and one other student joined up with Movado to help tackle this blindspot. To collect the necessary data, our team scraped sites including Nordstrom and Macy's, in addition to Amazon's third-party sellers. The synthesis of our analysis culminated in an easily-digestible R Shiny app. 

Web Scraping

Movado Data

To collect an inventory of products currently on the market, I first scraped Movado.com using Scrapy. The spider was first given the url from Movado's "Shop All Watches" page where it collected the total number of products,  then it requested the url created by inserting the total number of products onto the end. From this page, with all products loaded and visible, the scraper extracted and lengthened all products' partial hrefs into full product urls by adding "https://www.movado.com" to the start of each.  

Finally, with a list of all product urls, the spider moved through each page scraping as much information as possible: price, watch title, whether it was out of stock, dial size, whether it was an online exclusive, water resistance, intended gender for which the watch was made, strap type, model number, and more.

Macy's Data

To scrape Macys.com, the first of three sites we would investigate, the majority of the work could be accomplished using Scrapy. However, to collect the text content of sale banners and reviews, I needed to additionally use Selenium. The spider was begun at a search result page for "movado" where it learned and constructed the urls for each search page listing a portion of the total number of Movado products, then it ran through each search page to collect and construct final product urls from partial hrefs. Once at the product's page, Scrapy was able to collect most of the needed information, including the watch model, price, review count, rating, description, and more. 

While Scrapy performed most of the legwork,  briefly a webdriver was launched for each product to scrape the sale/promotion banner and review text. Review text scraping was only performed if a previously collected review count was greater than zero. Reviews however are placed further down on the page and required scrolling step by step to load each preceding element.

The excerpt below demonstrates that the brute force method, used to prioritize time and project completion, simply cycles through scrolling and sleeping to load the entire page, and breaks once the scrolling height surpasses the page's full length. A preliminary method of scrolling to the bottom of the page did not successfully load all elements, however there is surely improvements to be made to gain back some speed to the Selenium portion. 

if review_count != 0:
   try:
       scroll_height = 0
       review_text_list = []
       search_for_reviews = True
       while search_for_reviews:
           scroll_height += 350
           time.sleep(.3)
           driver.execute_script("window.scrollTo(0, " + \ 
               str(scroll_height) + ");")
           new_height = driver.execute_script("return \ 
                         document.body.scrollHeight")
           if new_height < scroll_height:
                                ...

Nordstrom Data 

Nordstrom.com unlike the previous two sites could not be scraped with Scrapy, and instead a Python script using solely Selenium was run to scrape the products' information. Nordstrom also was the first to pose problems regarding pop up ads. To avoid the pop up intercepting "click" calls, a variable was established at the beginning, popupad_acknowledged = False , and was checked before any 'click' action was called. For example, when scraping review text, if the variable was still false, it proceeded with a 'try' and 'except' block. 

if popupad_acknowledged == False:
    try:
        driver.execute_script("arguments[0].click();", nextbutton)
    except:
        driver.find_element_by_xpath('//a[@aria-label="No \ 
                                                  thanks"]').click()
        popupad_acknowledged = True
        driver.execute_script("arguments[0].click();", nextbutton)
else:
    driver.execute_script("arguments[0].click();", nextbutton)

If the 'try' clause failed, it meant the pop up had appeared and blocked a click, which the except clause would amend by acknowledging the ad, setting the variable then to 'True', and then attempting once more to click to the next page of reviews. The pop up ad was unique in that once it had been acknowledged once, it never appeared again within that same session. 

Amazon Data

My teammate prepared the Amazon scraper, which used entirely Scrapy and follows very similarly the beginning of Macy's' spider script, scraping through each search result page for a list of all product urls. 

However, Amazon often lists multiple sellers for a single product, so after scraping the overall information of watch model, rating, and review count from an individual product page, the spider then moved to each seller's page, retaining the previously scraped information in the meta data. Each seller's name and price was then joined with the product's overall information and written to each respective item's fields. 

Scraped Data Breakdown

Total number of products scraped from each site:

  • Movado: 328 products
  • Amazon: 239 products
  • Macy's: 331 products
  • Nordstrom: 106 products
Data Analysis on Watch Brand Movado and Its Retailers

Data Cleaning

After scraping all of the data from Movado and the three vendor sites, the products from each website needed to be connected. To begin, I created functions to extract a watch's crystal type, dial size, movement type, gender, and collection from a vendor's description or title. For Macy's, the gender a watch was made for was listed in the watch's title. While for Nordstrom, the type of crystal used on the watch's face was listed in a bulleted description section. 

For each of these descriptors that Movado gave to its watches, I tried to extract from the text on each vendor's product page. This provided a dataset for each vendor that had roughly the same structure as Movado's, which allowed fact-checking to be performed later on for inaccurate listings.

Joining By Model Number

After shaping the vendors' data to follow a similar structure, I needed to link the products together. Luckily both Amazon and Macy's listed model numbers on their page or in the url, as did Movado. However, Nordstrom did not list model numbers, and unfortunately their product descriptions were too vague to create a reliable system for deducing a product.

This would later create more problems during analysis, but in the interest of time, I chose to manually recode every Nordstrom product number to the specific Movado product number it represented. Nordstrom had the fewest products listed, so the decision saved time and introduced minimal human error. However, with each new scrape, the weakness of the method chosen showed greatly as often products would come and go quickly from the site. 

Data Engineering

Specifically for Macy's, there were frequently sales being posted to the site that required a 'discount code' to be typed at checkout, earning a customer sometimes 20-30% off an item. If the scraper identified the product was eligible for a discount and scraped the promotion, I modified the price of the product to reflect the discount being advertised. 

Initial Findings

To see the findings as presented on the dashboard, click here to visit the R Shiny app.

Price

Data Analysis on Watch Brand Movado and Its Retailers
While Macy's and Movado seem to have a very similar priced inventory, Nordstrom's stock features more lower-priced items, while Amazon stocks the lowest priced items of all
Data Analysis on Watch Brand Movado and Its Retailers

Depending of the timing of the scrape and the sales posted, Macy's and Nordstrom often held similar mean and median price points. However, the last scrape before presenting the final project occurred after Macy's ended a large sale, popping many of its items back to full price. The price density chart confirms that Macy's is very close in Movado's footstep with stocking more in the $750 - $1,750 range. 

Averages

Macy's median price matches Movado's, and surprisingly its mean price is slightly higher than Movado's, possibly signaling that Macy's stocks more of the higher priced items of Movado's than the lower priced. Amazon is consistently the lowest ranking in terms of mean and median price. 

We can also look at average savings by retailer. While sales come and go, there are a total of 115 products that Movado.com sells that can be found only at full price on retailers' sites. For the products whose prices do not match Movado.com, their average savings are captured in the value boxes below. Again, after the final scrape, Macy's discounts disappeared and the prices mostly match Movado's full price. Previously, Macy's competed with Nordstrom for the highest discount.

Additionally, while Amazon can often be a bargain site, surprisingly Amazon's average discount has been lower than the other two retailers. That is not the case currently after this most recent scrape, however, as Macy's ended a large blowout sale.

Yet Amazon's average lower discounts may be due to the fact that Macy's and Nordstrom frequently post large holiday sales and can handle lowering their profit in turn for moving items off shelves more than maybe Amazon's vendors can weather. More important, though, as seen in the above graph illustrating densities of prices, Amazon lists more lower priced items, which limit the size of the discount.

Availability

The highest portion of unique products scraped fall in the "Available only from retailers" category. The second leading group is products that can only be found on Amazon.com. Notably, Nordstrom.com does not have a high selection of products only offered on their site, with only 14 unique products that cannot be found elsewhere.

Reviews

Proportion for each retailer of products with reviews versus without reviews

Macy's and Nordstrom both hover very closely to a 50% chance that customers return to the product page and write a review. However, Amazon sees more than 75% of its products receive a review. This could simply be due to a larger scale of purchases from Amazon, since our data was limited by not seeing the exact number of purchases made on each site.

It could also however be a sign of better customer engagement on Amazon; Nordstrom and Macy's mostly lean heavily to the low end of the scale, receiving frequently only one review total for a product, whereas Amazon sees considerable quantities of products receiving > 1 reviews. It's possible that Amazon customers are more likely to return post-purchase to review a product, increasing the portion of products receiving any reviews and increasing the total review count per product.

Content of Reviews

In terms of time or thought spent reviewing a product, we can approximate dedicated customer engagement, or customers who are willing to spend some of their time writing well-rounded and insightful reviews, through word count. Yet surprisingly, there is a remarkably similar distribution of word counts across Nordstrom and Macy's. This might tell us that a very similar make-up of customers are likely to shop and review at both Macy's or Nordstrom, that the two shopping populations are rather similar.

When we look at content of reviews, we see the overwhelmingly positive feedback. A word cloud helps dissect the key words used, with "beautiful" and "love" being the most common. Following closely behind in frequency are other positive words, "perfect", "great", "elegant", and interestingly "gift".

This might be a clue that many customers are purchasing watches not for themselves but for others as gifts. This may lead to a bias in reviews as the content might be mostly influenced on the look of the watch from the gift-giver rather than the performance of the watch as experienced by the wearer.

Descriptions

Incorrect Sizes: A table from the dashboard displays products with two differing sizes listed within the product title and product description

While working with the data, it became clear that Nordstrom had vague and sometimes incorrect descriptions. Nordstrom specifically had some conflicting measurements when it came to case diameter. The title would list one size, while the product description listed a different size.

In addition, Nordstrom's listings for Movado products are often extremely vague in the item's title. We were able to extract the collection each product is a part of for some listings, yet for many others it was impossible. 'Movado Connect 2.0' watches are titled as 'Connect Chronograph' watches or 'Connect 2.0 Glitz Mesh Band'. And titles like 'Bold Bracelet Watch, 34mm' could describe a watch in almost any of the multiple 'Movado BOLD' collections. Almost half of all watches listed by Nordstrom have too vague a name to identify of which collection the product is a part.

Lastly, worse than listing products under vague titles, Nordstrom did not provide adequate descriptions to aid in identifying which product is being listed. For example, none of the watches from the 'Movado BOLD Thin' collection are described as being a thin watch on Nordstrom, nor is there any distinction made between watches with a mesh bracelet versus a pyramid mesh. And almost all watches are described as having a 'Museum dot', leading some of our early classification efforts astray when rarely were the products actually a part of one of the Museum collections.

Conclusions

While Nordstrom and Macy's sell at similar prices and with similar timed sales, Nordstrom sells far fewer, only a third, the number of watches of Macy's. Nordstrom also puts little variation or detail in the product titles and explanations, leading to a less-informed purchase from the site.

And while Amazon has better post-purchase customer engagement with a greater review count distribution and proportion of reviewed products versus never reviewed, Amazon's inventory is comprised mostly of products in the lower-price spectrum. 

The retailer that stood out as comparable to purchasing on Movado.com directly was Macy's. Macy's lists online an almost identical number of Movado products as Movado itself, and aside from seasonal sales, Macy's prices these watches as full price with little to no price difference from purchasing directly from Movado. 

Further Steps

With more time, I hope to add in a time component, to track sale timings, the affects of sales on review writing and ratings given, in addition to the inventory fluctuation noticed for most of the retailers as stock decreases and products are rotated in and out. I would hope to set up the scrapers to run at least every three days to every other day, as some sales last only for a weekend. 

Lastly, I would like to further explore the content of the reviews, performing sentiment analysis and isolating by retailer, as a preliminary word count displayed a high frequency of the words "bought", "for", and "my", signaling that Movado products are often bought as gifts. 

About Author

Victoria Lowery

Victoria is a recent graduate of NYC Data Science Academy where she studied dashboard creation, machine learning, and statistical analysis. Her background of three years in the television and commercial industry allowed her to hone her organization and...
View all posts by Victoria Lowery >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application