NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Data Analysis on Global Plastic Pollution

Data Analysis on Global Plastic Pollution

Fred (Lefan) Cheng - 程乐帆
Posted on Feb 6, 2020
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

R shiny | Project Code | Linkedin | Github | Presentations | Email: fredchengnyc@gmail.com

Introduction

​Click here to check my R shiny data web.

“The global plastic production has mushroomed over the past 70 years. In 1950 the world produced only 2 million tonnes per year. Since then, annual production has increased by nearly 200-fold, reaching 381 million tonnes in 2015. For context, this is roughly equivalent to the mass of two-thirds of the world population”. An estimated 8.3 billion tons of plastic have been produced since the 1950s — that’s equivalent to the weight of more than 800,000 Eiffel Towers. And only 20% of it has been recycled.

No photo description available.

Here are several facts about plastic pollution:

  • Worldwide, about 2 million plastic bags are used every minute.
  • New Yorkers alone use 23 billion plastic bags every year (from NYCDEC)
  • The average time that a plastic bag is used for is 12 minutes, while it takes around 500 years to biodegrade in the ocean.
  • Plastic is killing more than 1.1 million seabirds and animals every year and causing  harm to an astronomical number of animals.
  • The pollution eventually returns to us - The average person eats 70,000 microplastics each year.

Data Analysis on Global Plastic Pollution

Plastic Ocean  vividly portrays the problem. You can watch it:

After knowing these shocking facts, I decided to launch a web app in R shiny that discovered and visualized insights among the factors impacting plastic pollution across countries to help ENGOs resolve issues with a global vision. 

Data Description

The data is collected from Science Advances published by Geyer in 2017 and Jambeck in 2015. After merging the datasets and doing some feature engineering, the variables in the dataset, shown as below, include country, population, coastal population, economic development, etc.:

No photo description available.

Mismanaged waste from  material that is either littered or inadequately disposed of could eventually enter the ocean via inland waterways, wastewater outflows and transport by wind or tides. Inadequately managed waste indicates the waste that is not formally managed, which includes disposal in dumps or open, uncontrolled landfills where it is not fully contained. Both types can end up polluting rivers and oceans. 

Data Analysis and Visualization

As you can see from the picture below, I first explored all the variables by country on a map and bar chart and attached the corresponding finding.

No photo description available.

Here are the observations I got from the exploration:

  • Coastal countries with a large population have higher plastic waste generation. The top 2 countries are China and the United States.
  • 5 out of the top 8 countries that have the highest per capita plastic waste are small island countries. The other 3 top countries are high-income countries. Based on these observations, geographical features (inland or coastal) and economic level(GDP Per Capita) appear to be factors that influence plastic pollution. They should be further discovered.
  • The top 8 countries with the highest mismanaged plastic waste are all developing countries.
  • Developed countries have noticeably lower mismanaged plastic waste per person and share.
  • Developing countries have a significantly higher share of inadequately managed plastic waste, which has the highest risk of pollution.

Based on the observations above, I did a further analysis with an emphasis on the variables of plastic waste, mismanaged plastic waste, and coastal population and geographical features.

Data on Per Capita Plastic Waste 

As can be seen from the graph below, GDP per capita has a positive linear relationship with Plastic Waste Per Capita, which implies that Plastic waste tends to increase as people and countries get more productive / richer. The converse also hold: per capita plastic waste in low-income countries is noticeably smaller.

No photo description available.

The plastic waste per capita in developed countries is significantly higher than in developing countries, as shown below.

No photo description available.

Per Capita Mismanaged Plastic Waste 

As demonstrated in the plot blew, per capita mismanaged plastic waste tends to be higher in industrialized middle-income and fast-growing developing countries.

Image may contain: text

Likely this happens because these countries' waste management infrastructure cannot to keep pace with their rapid industrial and manufacturing growth. The problem is compounded by imported  massive quantities of plastic trash from developed countries. The result is that y developed countries have a small amount of mismanaged plastic waste combined with a significant amount of plastic waste.

Therefore, the development of sufficient waste management infrastructure in middle-income and growing lower-income countries is crucial to tackling the issue of plastic pollution.

As shown below, in contrast to the per capita plastic waste, the per capita mismanaged plastic waste in developing countries is significantly higher than in developed countries.

Image may contain: text

As demonstrated from the plot below, I engineered an economic growth variable by the average per capita GPD growing rate of the country. I measured the per capita mismanaged plastic waste against it. It seems that fast-growing countries have less mismanaged plastic waste on average. That might be  because the most fast-growing countries are either landlocked oil-rich countries or low-income countries whose demand has not surged yet. I will take a closer look at it in future work.

Mismanaged Plastic Waste by Costal population and Geographical Features

As can be seen in the plot below, the coastal population has a positive correlation with mismanaged plastic waste across counties, which might because the waste generated in the coastal region has a higher risk of entering the ocean and producing severe environmental damage.

Note: Coastal population measured as the population within 50 kilometers of a coastline

No photo description available.

As shown below, coastal countries have much higher mismanaged plastic waste per person than landlocked countries.

No photo description available.

Therefore, the coastal countries need more help in building effective plastic management systems due to their higher risk of producing mismanaged plastic waste, especially in developing countries.

The governance of plastic pollution has become the problem that brooks no delay and can be issued starting from ourselves.

References

  • http://advances.sciencemag.org/content/3/7/e1700782.full, Data published by Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
  • http://science.sciencemag.org/content/347/6223/768/, Data published by Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.
  • https://ourworldindata.org/plastic-pollution#impacts-on-wildlife, Plastic Pollution by Hannah Ritchie and Max Roser, was first published in September 2018.

 

About Author

Fred (Lefan) Cheng - 程乐帆

Fred Cheng is a certified data scientist who is working as a data science consultant in Zenon. He owns a Master’s Degree in Management and Systems from New York University with a bachelor’s in business management from The...
View all posts by Fred (Lefan) Cheng - 程乐帆 >

Related Articles

Data Visualization
Finding Data Trends in the Finance & Real Estate Sector
Data Visualization
Yunnan Sourcing Tea Storefront and Analysis of the High End Tea Market
Data Visualization
Data Analysis on Post-COVID Air Travels
Student Works
Data Analysis Of Starbucks' Global Presence
Capstone
Anomaly Detection Data with Fraudulent Healthcare Providers

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application