NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship πŸ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release πŸŽ‰
Free Lesson
Intro to Data Science New Release πŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See πŸ”₯
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular πŸ”₯ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New πŸŽ‰ Generative AI for Finance New πŸŽ‰ Generative AI for Marketing New πŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular πŸ”₯ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular πŸ”₯ Data Science R: Machine Learning Designing and Implementing Production MLOps New πŸŽ‰ Natural Language Processing for Production (NLP) New πŸŽ‰
Find Inspiration
Get Course Recommendation Must Try πŸ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release πŸŽ‰
Free Lessons
Intro to Data Science New Release πŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See πŸ”₯
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Data Scraping TripAdvisor for Airlines' Customer Reviews

Data Scraping TripAdvisor for Airlines' Customer Reviews

Mustafa Koroglu
Posted on Aug 5, 2017
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Contributed by Mustafa Koroglu. He is currently enrolled in the NYC Data Science Academy remote bootcamp program taking place from June-September 2017. This post is based on his third class project, web scraping, focusing on the use of web scraping techniques to acquire, process, and analyze raw data from the web. 

Introduction

This blog post will try to shed some light on the airline rankings, especially for airline companies from North America. Questioning independent organizations' ranking results comes to me interesting as the customer reviews should matter at this point. A recent news at CBC.ca is also asking the same question referring to the data from another survey result conducted by an independent market research firm (the news can be reached from here). Besides these facts, my main aim is to expose any available marketing strategies for the airline companies from the customer reviews.

This project is about scraping customer reviews for eight major airlines from tripadvisor.ca. These companies include Air Canada, American Airlines, British Airways, Delta Airlines, KLM Royal Dutch Airlines, Lufthansa, Turkish Airlines, and United Airlines.

Data

I used scrapy spider to collect the dataset.  The reviews are spanning the period from January 2016 to the current day, August 4, 2017. The following image below is a sample review, where I scraped the title, rating ,content, date, destination, cabin class, and route. The dataset has in total 70015 reviews. The rating variable ranges from 1 to 5, where 1 is for the worst and 5 is for the best.

Data Scraping TripAdvisor for Airlines' Customer Reviews

 

Data Visualization

The first graph will introduce the comparison of proportions of ratings across airline companies.

Data Scraping TripAdvisor for Airlines' Customer Reviews This barplot shows that Delta Airlines, KLM Royal Dutch Airlines, Lufthansa, and Turkish Airlines have almost 75% of the ratings belong to rating level  4 and 5. If we look at the graph from the lowest rating levels, we see that KLM, Delta Airlines, Lufthansa and Turkish Airlines are the ones having the lowest sharing of rating 1 and 2, respectively.

 

 

Data Scraping TripAdvisor for Airlines' Customer Reviews

 

 

The next barplot provides us the total number of ratings for each cabin class across different airlines. This is the general picture of the dataset in terms of ratings and airlines.

 

 

 

 

 

 

Customer reviews and associated ratings are expected to be fluctuated across seasons. As an illustration, the following the line plot shows an increase on the number of ratings for Summer season for Air Canada customer reviews. It is surprising that the number of ratings for each rating level on June 2017 is much higher than its corresponding value last year. Number of  average rating and rating level 4 are almost double other ratings on August 2016.

Word Frequencies

In this section, I will examine the most frequently used words from the content column for Air Canada customer reviews. The total reviews as well as subset of reviews for lowest and highest rating reviews will be analyzed to get more insights from the text mining. I used the "wordcloud" and "tm" packages in R for this section.

The word cloud (left figure) and the barplot of first twenty most frequently used words show that flight, air, and canada are the words used at most by the customers. In order to better understand customer actions reflected on the reviews, I did the same work for a subset of ratings 1, 2 and ratings 4, 5 as a group of reviews. I also dropped the first three most frequently used words, the same as in the figures above for total reviews. The figures are as follows:

       Positive and negative reviews can be seen from these figures. The most frequent words from high ratings reviews are time, good, service, and seat.  The negative reviews include hour, seat, time, service, toronto, and delay as the most frequent words, among others.

Conclusion

The above analysis can be done for other airlines and compared at one figure with using comparison.cloud function from the same package in R. However,  doing the same analysis for all airline reviews at once might cause a memory allocation problem. To sum up, from this project, we see that analyzing customer reviews from different travel websites will enable the data scientist/analyst to see much better picture of the ratings and reflection of customers' reviews.

Further steps in this project could be:

  • scraping detail ratings from the reviews.
  • Travel tips, which are available on the website for scraping, might be useful to find more direct reflection of customer feelings.
  • Sentiment analysis can be used to get more insightful results.

For my GitHub repository, please visit here. For additional readings about scraping the TripAdvisor, see Peter Johnson's page here.

About Author

Mustafa Koroglu

Mustafa Koroglu is a post-doctoral fellow in Global Health Policy Lab focusing on survey data analysis to explain global health shocks to health care utilization. He believes in data-driven decisions and policy implications. He is an active learner...
View all posts by Mustafa Koroglu >

Related Articles

Machine Learning
Ames House Prices Predictions
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
Data Visualization
Beyond the Podium: A Global Journey Through Formula 1 History
Meetup
Building a Safer Future
Meetup
New York Restaurants: Inspection Data Analysis, Statistics and More - R Programming Language

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Undangan Pernikahan Unik February 7, 2019
I just couldn't leave your site prior to suggesting that I extremelly enjoyed tthe standard info an individual provide in your visitors? Is gonna be again regularly in order to investigate cross-check new posts
bijoux bulgari replique December 15, 2017
Really excellent article Cat! As a newbie to the world of blogging, it helped me structure a plan to get onto the Huffington Post site (I like to dream BIG!) thank you again xx bijoux bulgari replique http://www.anellobvl.cn/fr/bulgari-bzero1-ring-c1.html

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    Β© 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application