NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Data Scraping Popular Board Games

Data Scraping Popular Board Games

Hayes Cozart
Posted on May 29, 2016
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Scraping Popular Board Games

Hayes Cozart

May 29, 2016

Why Board Games?

Board games  have been one of my hobbies for a long time. I enjoy them for the challenges they present and the strategies involved in both facing off against other players or the board game itself.  I believe, now is the perfect time to be looking at board games since data shows the industry is currently in what is being referred to as the golden age of board games.

There are many new people joining the hobby and lots of new types of games entering the market. This is, in part, due to things like kickstarter allowing designers to develop the games they want. The issue, right now is not finding a good game but rather finding the exact kind of game that you want to play. I also wanted to look at difficulty or complexity of a game since I enjoy challenging games, I expected to see games that were harder or more complex would be more popular.

What did I scrape?

The site I scraped was boardgamegeek.com the site ranks all board games that have been made through community vote and includes a lot of information on each board game. For this project, I used scrapy and selenium together as I needed to go through multiple links and some of the pages were in javascript.

The first page I scraped which can be seen below was the overall ranking page for every board game. Every page lists 100 board games before you need to go to the next page. The scrapy program was written to go through every page and collect the rank, name of the game, the ratings, the number of voters, the price, and the link to the board game's details.

Data Scraping Popular Board Games

The code was written so the scrapy spider would go through those collected links to the example page shown below. This page was written in javascript which is why I needed to use selenium to open a browser to pull the data. From this page the spider pulled the type of game, its category, the mechanisms in the game, the age requirement, the time to play, the number of players, the weight, and the description. All of these values were connected back to the values on the first page to create a complete item or observation.

Data Scraping Popular Board Games

Because this is all being done through selenium running the program for every board game on the site would take roughly 40 hours. It was for this reason that I only pulled the top 1500 and bottom 1500 ranked board games. I am already working on making a better running scrapy program and will update this post with that code when it is finished.

Data Results

Density

As I said at the beginning of this post, we are in a golden age of board games. I wanted to test that hypothesis. This is why the first thing that I looked at was the year the game was published and compared the top ranked board games to the bottom ranked board games.

Data Scraping Popular Board Games

This density graph shows the highest density of the top ranked games are in current years. So the fact that we are in a golden age of board games does appear to be true. It also shows that the bottom ranked board games seem to have the highest density around the early 2000's but drop off in more recent years.  As a side note, the site has some really old games included in its list such as Go or Chess. These games make the graph difficult to read so I filtered the data to everything after 1950. That period of time is more what people think of when they think of board games.

Proportion of Boardgames

The next analyses I did was on the suggested age of the board game. This was to answer the question of complexity of a game. I hypothesized that the harder the game the higher the suggested age. Though this is probably true, more interesting insights were found.

Age graph 2

Number of Boardgames

This graph shows that as the suggested age goes up the proportion of top board games increases. This is true up until about age 14 and up. This could mean that as games require you to be older to play, or are more complex, they are generally more popular.  However, an interesting observation occurs when you look purely at the numbers.

Age graph 1

This graph shows that the top ages listed for board games are 8 and up, 10 and up, and 12 and up. This most likely has to deal with marketing games to different audiences and may say more about a game's theme or category than its complexity. I intend to look into this further by comparing community voted age versus game age since that may capture the difference between how hard a game is to understand versus how the game is marketed.

Density by Difficulty

Next to further try and capture whether or not a more complex game is more popular than other types of games I looked at a game's difficulty to learn. Here is how a community voted field listed on the site.

Difficulty

In this density graph it shows that the the bottom ranked games are all centered around the low difficulty. This supports the hypothesis that the more complex a game is the more popular it is. However, it looks like the sweet spot for difficulty is around 2.5 and that the density of top games seems to drop off towards the higher end of difficulty. This indicates that for a game to be popular, players want the game to be complex but not too difficult to learn.

Density by Time

Next I looked at the amount of time it takes to play the game. I thought that this could be a barrier to entry for some people, but also that complex games might take longer to play than simple games.

Time

This graph illustrates that there does not seem to be much difference overall between the time it takes to play top rated board games versus bottom ranked board games. It does appear that bottom ranked board games are much more dense when the game takes a very short amount of time to play, while the top ranked are more dense at the 40 to 60 minute mark. Otherwise, both show very similar trends.

Number of Boardgames by Mechanics

Subsequently I looked at the number of mechanics a game has, as the more mechanics there are, the more complex the game will be.

Mechanics 1

Proportion of Boardgames by Mechanics

This graph shows that most games that are made do not have many mechanics. However, the chart below shows the more mechanics games include, the more popular they become. A game that has zero mechanics is most likely a game so simple that there is not a way to describe it, e.g. Tic-Tac-Toe.

Mechanics 2

This graph shows as the number of mechanics increases then proportionally more games become top ranked. This defends the idea that the more complex a game is the more popular it is up to the point where it becomes too complex.

Number of Boardgames by Themes

Next, the number of themes or categories a game has was considered. This is, in part, a supposition that in this golden age of board games there have been more games with different or complex themes entering the market. I was interested in capturing that information to discover if this was true.

Themes

It does not look like theme or at least the number of themes a game has provides much information on the differences between top and bottom ranked games. Generally, if a game has more themes, it is more popular but this category needs to be broken out more to get usable information.

Density of Boardgames by Price

Lastly, I considered whether price might be a barrier to entry or reduce the popularity of a game.

Price

Price turned out to be a very interesting variable to consider and should be broken out more to get a better idea of what is happening. The two immediate observations are that bottom ranked games that are zero priced are very dense at the bottom of the price scale and top ranked games are more evenly distributed among all the price ranges. The top ranked game, however, drop off at around the $50 mark.

The zero priced games are all the games where no price was listed but this did not necessarily mean that they were free. This price included games like Old Maid or Go Fish that did not have a price since all you needed was a deck of cards to play. War games, like Warhammer, where you buy your armies separately did not have a set price range. In future work, these zero priced games will need to be more thoroughly analyzed to determine the differences among these games.

Conclusions/Next Steps

The main conclusions, after reviewing all of this data, are that board games have been growing more popular in recent years. The difficulty of a game does seem to be associated with it's popularity. The more mechanics a game has the more popular the game is. Finally, there are so many ways to look at this data and so much to look into that these analyses have barely scratched the surface of potential analysis.

On that note, the next steps for me to continue analysis of this data are that I want to change my scraping program and to use that program to scrape data for all the board games on the site. Then I would like to make a shiny app that would allow someone looking for a game to buy, to get a list of games matching what they are looking for ranked by the sites order. Finally, this data is a prime candidate for machine learning since there are many different ways to look at the data including trying to find out what combination of variables would make a top ranked board game.

 

About Author

Hayes Cozart

Rigorous analysis has been the foundation for Hayesโ€™s educational and professional experiences to date, as an undergraduate psychology major at the College of William and Mary, and more recently in his work as a Pricing and Data Analyst...
View all posts by Hayes Cozart >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Google January 13, 2021
Google The time to read or stop by the content material or websites we've linked to beneath.
Google December 27, 2020
Google Below youย’ll discover the link to some internet sites that we believe you need to visit.
Google October 27, 2019
Google We like to honor numerous other web web pages around the web, even if they arenย’t linked to us, by linking to them. Underneath are some webpages worth checking out.
Google September 23, 2019
Google Here are some links to internet sites that we link to because we think they are worth visiting.
sim vietnamobile gia re 25k January 8, 2018
Having read this I thought it was rather enlightening. I appreciate you spending some time and energy to put this article together. I once again find myself personally spending a significant amount of time both reading and posting comments. But so what, it was still worthwhile!
424374 September 21, 2017
Well i know someone thats positive and never have spread the hiv out of two marriagesยกยญhow is that possible after almost 15 years?
Timothyvob September 20, 2017
724-เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธ•เนˆเธญ เธซเธฃเธทเธญ เธ‹เธทเน‰เธญเน„เธ”เน‰เธ‡เนˆเธฒเธขเน† เนเธ„เนˆ 5 เธ™เธฒเธ—เธต เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡เธ—เธฑเธ™เธ—เธต OMG!!! เธกเธฑเธ™เธ‡เนˆเธฒเธขเธกเธฒเธ เธกเธฑเธ™เธ‡เนˆเธฒเธขเธกเธฒเธ เนเธญเธ” Line:Kaitookjing เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธ—เธธเธเธ›เธฃเธฐเน€เธ เธ—เธˆเธฒเธเธšเธฃเธดเธฉเธฑเธ—เธŠเธฑเน‰เธ™เธ™เธณ เธ‡เนˆเธฒเธขเน† เน„เธกเนˆเธเธตเนˆเธงเธด เน€เธ›เธฃเธตเธขเธšเน€เธ—เธตเธขเธšเธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธ•เน‰เธญเธ‡เธเธฒเธฃเธžเธนเธ”เธ„เธธเธขเธเธฑเธšเน€เธฃเธฒเน€เธเธตเนˆเธขเธงเธเธฑเธšเน€เธฃเธฒ-เธญเธตเธ‹เธตเนˆเธ„เธญเธกเนเธžเธฃเนŒเธ•เธดเธ”เธ•เนˆเธญเน€เธฃเธฒ เน€เธ—เธตเธขเธšเธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธŠเธฑเน‰เธ™1 เนƒเธ™ 10 เธงเธด - เธœเนˆเธญเธ™เธชเธšเธฒเธข 0% เน„เธ”เน‰เธชเธนเธ‡เธชเธธเธ” 6 เน€เธ”เธทเธญเธ™โ€Ž เธšเธฃเธดเธเธฒเธฃเธ•เนˆเธญเธ—เธฐเน€เธšเธตเธขเธ™เธฃเธ– เธ„เนˆเธฒเธšเธฃเธดเธเธฒเธฃเนเธฅเธฐเธˆเธฑเธ”เธชเนˆเธ‡เธ—เธฐเน€เธšเธตเธขเธ™เธ”เน‰เธงเธข Messenger 200 เธšเธฒเธ— (เน„เธกเนˆเธฃเธงเธกเธ เธฒเธฉเธต) เธ•เธดเธ”เธ•เนˆเธญเธชเธญเธšเธ–เธฒเธกเน€เธฃเธฒเน„เธ”เน‰เธ—เธธเธเธŠเนˆเธญเธ‡เธ—เธฒเธ‡ เธ—เธฑเนˆเธงเธ›เธฃเธฐเน€เธ—เธจ 724.CO.TH เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡เธ—เธฑเธ™เธ—เธต OMG!!! เธกเธฑเธ™เธ‡เนˆเธฒเธขเธกเธฒเธ - Line: Kaitookjing เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข เธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™ 2 เธžเธฅเธฑเธช เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡ เธญเธฐเน„เธฃ เธšเน‰เธฒเธ‡ โ€Ž เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธŠเธฑเน‰เธ™ 1 เน„เธ”เน‰เนƒเธ™ 10 เธงเธด เธ”เน‰เธงเธขเธ‚เน‰เธญเธกเธนเธฅเธ—เธตเนˆเธ„เธฃเธญเธšเธ„เธฅเธธเธกเธ—เธตเนˆเธชเธธเธ”เธˆเธฒเธ 724 เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเน„เธ”เน‰เนƒเธ™ 10 เธงเธด ยท เธฃเธงเธกเธ‚เน‰เธญเธกเธนเธฅเธ›เธฃเธฐเธเธฑเธ™เธŠเธฑเน‰เธ™1 ยท เธฃเธงเธกเธ‚เน‰เธญเธกเธนเธฅเธˆเธฒเธเธ—เธธเธเน€เธงเน‡เธšเน„เธ‹เธ•เนŒ ยท เธœเนˆเธญเธ™เน„เธ”เน‰ 0% เธ—เธธเธเธเธฃเธกเธ˜เธฃเธฃเธกเนŒ เธซเธฒเธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธ—เธตเนˆเธ„เธธเน‰เธกเธ—เธตเนˆเธชเธธเธ”เน€เธ›เธฃเธตเธขเธšเน€เธ—เธตเธขเธšเธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒ เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1 เธ–เธนเธเธ—เธตเนˆเธชเธธเธ” - เน€เธˆเธญเธ–เธนเธเธเธงเนˆเธฒเน€เธฃเธฒเธˆเนˆเธฒเธขเธชเนˆเธงเธ™เธ•เนˆเธฒเธ‡เธ—เธฑเธ™เธ—เธต เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธŸเธฃเธตเนƒเธ™ 1 เธ™เธฒเธ—เธต เน„เธกเนˆเธกเธตเธเธฒเธฃเธซเธฅเธญเธเธ–เธฒเธกเธ‚เน‰เธญเธกเธนเธฅเธชเนˆเธงเธ™เธ•เธฑเธง เนเธ–เธกเธ”เน‰เธงเธขเน‚เธ›เธฃเน‚เธกเธŠเธฑเนˆเธ™เธกเธฒเธเธกเธฒเธข เธœเนˆเธญเธ™เธชเธšเธฒเธขเน† เธ”เธญเธเน€เธšเธตเน‰เธข 0%, เธเธฒเธฃเธฑเธ™เธ•เธตเธšเธฃเธดเธเธฒเธฃเธญเธšเธญเธธเนˆเธ™, เธเธฒเธฃเธฑเธ™เธ•เธตเธ–เธถเธ‡เธˆเธธเธ”เน€เธเธดเธ”เน€เธซเธ•เธธเน€เธฃเน‡เธง เธœเนˆเธญเธ™เธŠเธณเธฃเธฐ 0% 6 เน€เธ”เธทเธญเธ™เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธ›เธฃเธฐเธเธฑเธ™เธŸเธฃเธตเน€เธฅเธทเธญเธเธ‹เนˆเธญเธกเน„เธ”เน‰เธ—เธธเธเธญเธนเนˆเธ—เธฑเนˆเธงเน„เธ—เธข เธŸเธฃเธต เธž.เธฃ.เธš. เธเธฑเธšเธ›เธฃเธฐเธเธฑเธ™ เธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™ 1 เธ›เธต เธ—เธตเนˆ 2 โ€Ž โ€Ž เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธŸเธฃเธตเนƒเธ™ 1 เธ™เธฒเธ—เธต เน„เธกเนˆเธกเธตเธเธฒเธฃเธซเธฅเธญเธเธ–เธฒเธกเธ‚เน‰เธญเธกเธนเธฅเธชเนˆเธงเธ™เธ•เธฑเธง เนเธ–เธกเธ”เน‰เธงเธขเน‚เธ›เธฃเน‚เธกเธŠเธฑเนˆเธ™เธกเธฒเธเธกเธฒเธข Insurance coverage: เธ–เธถเธ‡เธˆเธธเธ”เน€เธเธดเธ”เน€เธซเธ•เธธเนƒเธ™ 30 เธ™เธฒเธ—เธต, เธœเนˆเธญเธ™เธชเธšเธฒเธขเน† เธ”เธญเธเน€เธšเธตเน‰เธข 0%, เธเธฒเธฃเธฑเธ™เธ•เธตเธšเธฃเธดเธเธฒเธฃเธญเธšเธญเธธเนˆเธ™, เธเธฒเธฃเธฑเธ™เธ•เธตเธ–เธถเธ‡เธˆเธธเธ”เน€เธเธดเธ”เน€เธซเธ•เธธเน€เธฃเน‡เธง เน€เธ—เธตเธขเธšเธ›เธฃเธฐเธเธฑเธ™เธฃเธ– 20 เธšเธฃเธดเธฉเธฑเธ—เธŠเธฑเน‰เธ™เธ™เธณ - เนƒเธ™ 30 เธงเธดเธ™เธฒเธ—เธต เธœเนˆเธญเธ™ 0% 6 เน€เธ”เธทเธญเธ™โ€Ž 724.CO.TH เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡เธ—เธฑเธ™เธ—เธต OMG!!! เธกเธฑเธ™เธ‡เนˆเธฒเธขเธกเธฒเธ - Line: Kaitookjing เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธœเธกเธเน‡เธ‚เธฒเธขเธ™เธฐ - 724.CO.TH เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข เธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™ 2 เธžเธฅเธฑเธช เธงเธดเธฃเธดเธขเธฐ โ€Ž เธˆเนˆเธฒเธขเธชเธ”เธฅเธ” 5%,เธŸเธฃเธต เธฃเธ–เนƒเธŠเน‰เธฃเธฐเธซเธงเนˆเธฒเธ‡เธ‹เนˆเธญเธก/เธ„เนˆเธฒเน€เธ”เธดเธ™เธ—เธฒเธ‡ 1,000 เธš.,เธ—เธตเนˆเธญเธทเนˆเธ™เธ–เธนเธเธเธงเนˆเธฒ เธ„เธทเธ™เน€เธ‡เธดเธ™ 100% เธšเธฃเธดเธเธฒเธฃเธญเธญเธ™เน„เธฅเธ™เนŒเธเธงเนˆเธฒ 14 เธ›เธต ยท เธฅเธนเธเธ„เน‰เธฒเนƒเธŠเน‰เธกเธฒเธเธเธงเนˆเธฒ 10 เธฅเน‰เธฒเธ™เธฃเธฒเธข 724 เธ‹เธทเน‰เธญเธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1 เธงเธฑเธ™เธ™เธตเน‰ เธเธฒเธฃเธฑเธ™เธ•เธตเธฃเธฒเธ„เธฒเธ”เธตเธ—เธตเนˆเธชเธธเธ”! เธœเนˆเธญเธ™เธˆเนˆเธฒเธขเธชเธšเธฒเธขเน† 0% เธ™เธฒเธ™ 10 เน€เธ”เธทเธญเธ™ เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™1 เธงเธดเธฃเธดเธขเธฐเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข เธฃเธฒเธ„เธฒเธ–เธนเธ เน„เธกเนˆเธกเธตเธšเธฑเธ•เธฃเธเน‡เธœเนˆเธญเธ™เน„เธ”เน‰ - เน€เธญเน€เธŠเธตเธขเน„เธ”เน€เธฃเน‡เธ„ เน‚เธ›เธฃเน‚เธกเธŠเธฑเนˆเธ™เธงเธดเธฃเธดเธขเธฐเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™1 เธŠเธฑเน‰เธ™ 2+ เธŠเธฑเน‰เธ™ 3 เธ‹เธทเน‰เธญเธ‡เนˆเธฒเธข เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธฃเธฒเธ„เธฒเธ–เธนเธ เธœเนˆเธญเธ™เน„เธ”เน‰ 0 % 6 เน€เธ”เธทเธญเธ™ เน„เธกเนˆเธกเธตเธšเธฑเธ•เธฃเน€เธ„เธ”เธดเธ•เธเน‡เธœเนˆเธญเธ™เน„เธ”เน‰ โ€Žเธชเธดเธ™เธกเธฑเนˆเธ™เธ„เธ‡เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข ยท โ€Žเธเธฃเธธเธ‡เน€เธ—เธžเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข ยท โ€Žเน‚เธ›เธฃเน‚เธกเธŠเธฑเนˆเธ™ เธญเธฒเธ„เน€เธ™เธขเนŒเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข ยท โ€Žเน‚เธ›เธฃเน‚เธกเธŠเธฑเนˆเธ™ 724 เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1 - เน€เธกเธทเธญเธ‡เน„เธ—เธขเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข เน€เธ›เธดเธ”เธŠเนˆเธญเธ‡เธ—เธฒเธ‡ เธ•เนˆเธญเธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธ‡เนˆเธฒเธขเน† เนเธ„เนˆ 5 เธ™เธฒเธ—เธต 724.CO.TH เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡เธ—เธฑเธ™เธ—เธต OMG!!! เธกเธฑเธ™เธ‡เนˆเธฒเธขเธกเธฒเธ - Line: Kaitookjing เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 2 โ€Ž เธเธฃเธญเธเธ‚เน‰เธญเธกเธนเธฅเน€เธžเธทเนˆเธญเน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™ 1 เธžเธฃเน‰เธญเธกเธชเนˆเธงเธ™เธฅเธ”เธเธฒเธฃเธ•เธดเธ”เธเธฅเน‰เธญเธ‡ เน€เธงเน‡เธšเน„เธ‹เธ•เนŒเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธญเธญเธ™เน„เธฅเธ™เนŒ เน‚เธ”เธขเธšเธฃเธดเธฉเธฑเธ—เน€เธกเธทเธญเธ‡เน„เธ—เธขเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข. เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™1 เธ„เน‰เธ™เธซเธฒเน€เธšเธตเน‰เธข เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธข เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒ - 724 เธ„เน‰เธ™เธซเธฒ เน€เธ›เธฃเธตเธขเธšเน€เธ—เธตเธขเธšเน€เธšเธตเน‰เธข เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™1 เธˆเธฒเธเธšเธฃเธดเธฉเธฑเธ—เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™เธ™เธณ เธžเธฃเน‰เธญเธกเธšเธฃเธดเธเธฒเธฃเน€เธชเธฃเธดเธกเธ—เธตเนˆเธ”เธตเธ—เธตเนˆเธชเธธเธ” เน€เธžเธทเนˆเธญเธ„เธงเธฒเธกเธ„เธธเน‰เธกเธ„เนˆเธฒเธ—เธตเนˆเธชเธธเธ”เธˆเธฒเธ เธ—เธตเธ„เธดเธงเน€เธญเน‡เธก เน‚เธšเธฃเธ„เน€เธเธญเธฃเนŒ เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข. เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒ >20เธšเธฃเธดเธฉเธฑเธ— เน€เธŠเน‡เธ„เธฃเธฒเธ„เธฒเธŸเธฃเธต - เธ–เธนเธเธชเธธเธ”เน† เธฃเธนเน‰เธฃเธฒเธ„เธฒเธ—เธฑเธ™เธ—เธต เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™ 1, 2+, 3+, 3 เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธ„เธฃเธฑเน‰เธ‡เน€เธ”เธตเธขเธง เธฃเธนเน‰เธ—เธธเธเธšเธฃเธดเธฉเธฑเธ— เน„เธกเนˆเธ•เน‰เธญเธ‡เน‚เธ—เธฃเธจเธฑเธžเธ—เนŒ เธœเนˆเธญเธ™ 0% 6 เน€เธ”เธทเธญเธ™ เธˆเนˆเธฒเธขเธชเธ”เธฅเธ”เธžเธดเน€เธจเธฉ เธˆเธฑเธ”เธชเนˆเธ‡เธŸเธฃเธตเธ—เธฑเนˆเธงเน„เธ—เธข เธ›เธฅเธญเธ”เธ เธฑเธข เธกเธฑเนˆเธ™เนƒเธˆ 100% เธชเธฑเนˆเธ‡เธ‹เธทเน‰เธญเธญเธญเธ™เน„เธฅเธ™เนŒเน€เธฅเธข!โ€Žโ€Ž โ€Žเธ›เธฃเธฐเธเธฑเธ™เธŠเธฑเน‰เธ™ 1 ยท โ€Žเธ›เธฃเธฐเธเธฑเธ™ 3 เธžเธฅเธฑเธช (3+) ยท โ€Žเธ›เธฃเธฐเธเธฑเธ™เธŠเธฑเน‰เธ™ 3 ยท โ€Žเธž.เธฃ.เธš. เธฃเธ–เธขเธ™เธ•เนŒเธ›เธฃเธฐเธเธฑเธ™เธŠเธฑเน‰เธ™ 1 เธ–เธนเธเธชเธธเธ”เน† >20 เธšเธฃเธดเธฉเธฑเธ— เน€เธŠเน‡เธ„เธฃเธฒเธ„เธฒเน€เธฅเธข เธŸเธฃเธต ... - 724 เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™ 1 เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธ„เธฃเธฑเน‰เธ‡เน€เธ”เธตเธขเธง เธฃเธนเน‰เธ—เธธเธเธšเธฃเธดเธฉเธฑเธ— เนเธชเธ”เธ‡เธฃเธฒเธ„เธฒเธ—เธฑเธ™เธ—เธต เน„เธกเนˆเธ•เน‰เธญเธ‡เน‚เธ—เธฃเธจเธฑเธžเธ—เนŒ เธœเนˆเธญเธ™ 0% 6 เน€เธ”เธทเธญเธ™ เธˆเนˆเธฒเธขเธชเธ”เธฅเธ”เธžเธดเน€เธจเธฉ เธˆเธฑเธ”เธชเนˆเธ‡เธŸเธฃเธตเธ—เธฑเนˆเธงเน„เธ—เธข เธชเธฑเนˆเธ‡เธ‹เธทเน‰เธญเธญเธญเธ™เน„เธฅเธ™เนŒเน€เธฅเธข! เธชเธดเธ™เธกเธฑเนˆเธ™เธ„เธ‡เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข - เธ›เธฃเธฐเธเธฑเธ™เธชเธธเธ‚เธ เธฒเธž เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เน€เธฃเธฒเธ›เธฃเธฐเธเธฑเธ™..เธ„เธธเธ“เธกเธฑเนˆเธ™เนƒเธˆ 724.CO.TH เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡เธ—เธฑเธ™เธ—เธต OMG!!! เธกเธฑเธ™เธ‡เนˆเธฒเธขเธกเธฒเธ - Line: Kaitookjing เธ•เนˆเธญ เธ›เธฃเธฐเธเธฑเธ™ เธฃเธ–เธขเธ™เธ•เนŒ เธ›เธต 2 เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1 (เธ‹เนˆเธญเธกเธจเธนเธ™เธขเนŒ) เน€เธšเธตเน‰เธขเน€เธฃเธดเนˆเธกเธ•เน‰เธ™ 15,800 เธšเธฒเธ— เธชเธฒเธกเธฒเธฃเธ–เธ™เธณเธฃเธ–เธ›เธฃเธฐเธเธฑเธ™เธ—เธตเนˆเน€เธเธดเธ”เธญเธธเธšเธฑเธ•เธดเน€เธซเธ•เธธเน€เธ‚เน‰เธฒเธ‹เนˆเธญเธกเธ—เธตเนˆเธจเธนเธ™เธขเนŒเธ‹เนˆเธญเธกเธฃเธ–เธขเธ™เธ•เนŒเธขเธตเนˆเธซเน‰เธญเธ™เธฑเน‰เธ™เน†เน„เธ”เน‰ เน‚เธ”เธขเธˆเนˆเธฒเธขเธ„เนˆเธฒเน€เธšเธตเน‰เธขเธ›เธฃเธฐเธเธฑเธ™เนƒเธ™เธญเธฑเธ•เธฃเธฒเธ—เธตเนˆเธ•เนˆเธณเน€เธ›เน‡เธ™เธžเธดเน€เธจเธฉ. เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เธ›เธฃเธฐเน€เธ เธ— 1 - เธ˜เธ™เธฒเธ„เธฒเธฃเธเธชเธดเธเธฃเน„เธ—เธข เธขเธดเน‰เธกเน„เธ”เน‰เนเธกเน‰เธฃเธ–เน€เธ‚เน‰เธฒเธญเธนเนˆ เธ”เน‰เธงเธขเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เธ›เธฃเธฐเน€เธ เธ— 1 เน„เธกเนˆเธ•เน‰เธญเธ‡เธ•เธฃเธงเธˆเธชเธ เธฒเธžเธเนˆเธญเธ™เธ—เธณเธ›เธฃเธฐเธเธฑเธ™ เธฃเธฑเธšเน€เธ‡เธดเธ™เธ„เนˆเธฒเน€เธ”เธดเธ™เธ—เธฒเธ‡เธฃเธฐเธซเธงเนˆเธฒเธ‡เธฃเธญเธ‹เนˆเธญเธกเธ–เธถเธ‡ 5000 เธšเธฒเธ—. เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1 เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒ เธ—เธตเนˆเธ„เธธเน‰เธกเธ„เนˆเธฒเธ—เธตเนˆเธชเธธเธ” | 724 เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1 เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡เธ„เธฃเธญเธšเธ„เธฅเธธเธกเธชเธนเธ‡เธชเธธเธ”เธ—เธธเธเธเธฒเธฃเธŠเธ™ เธ‹เธทเน‰เธญ เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒ เธเธฑเธšเน€เธฃเธฒ เธชเธฐเธ”เธงเธ เธ„เธธเน‰เธกเธ„เนˆเธฒ เธ„เธธเน‰เธกเธฃเธฒเธ„เธฒ เธ›เธฅเธญเธ”เธ เธฑเธข เน€เธ„เธฅเธกเธ‡เนˆเธฒเธขเธ•เธฅเธญเธ” 24 เธŠเธก. เธ„เธฅเธดเธเธ”เธนเน€เธšเธตเน‰เธข เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒ เน€เธฅเธข! | 724 เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™1 | เธฃเธฒเธ„เธฒเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ เธชเธธเธ”เธ›เธฃเธฐเธซเธขเธฑเธ” เน‚เธ—เธฃเธชเธฑเนˆเธ‡เน€เธฅเธขเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒเธŠเธฑเน‰เธ™ 1 เธฃเธฒเธ„เธฒเธ–เธนเธ เธ›เธฅเธญเธ”เธ เธฑเธข เธœเนˆเธญเธ™เธŠเธณเธฃเธฐ 0% เธŸเธฃเธตเธฃเธ–เนƒเธŠเน‰เธฃเธฐเธซเธงเนˆเธฒเธ‡เธ‹เนˆเธญเธก เธˆเธฑเธ”เธชเนˆเธ‡เธŸเธฃเธต เธ”เธนเนเธฅเธซเธฅเธฑเธ‡เธเธฒเธฃเธ‚เธฒเธขเธ”เธตเน€เธขเธตเนˆเธขเธก เธ›เธฃเธฐเธเธฑเธ™เธŠเธฑเน‰เธ™ 1 เธ„เธธเน‰เธกเธ„เธฃเธญเธ‡เธญเธฐเน„เธฃเธšเน‰เธฒเธ‡ เธ„เธฅเธดเธเน€เธฅเธข. โ€Ž เธ›เธฃเธฐเธเธฑเธ™เธŠเธฑเน‰เธ™1 เนƒเธˆเธ›เน‹เธฒ เน€เธ„เธฅเธกเธ‡เนˆเธฒเธข เธกเธตเธฃเธ–เนƒเธŠเน‰เธฃเธฐเธซเธงเนˆเธฒเธ‡เธ‹เนˆเธญเธก เธœเนˆเธญเธ™0% เน„เธกเนˆเธกเธตเธšเธฑเธ•เธฃเธเน‡เธœเนˆเธญเธ™เน„เธ”เน‰ เธชเธกเธฑเธ„เธฃเน€เธฅเธข เธœเธนเน‰เธ™เธณเธ”เน‰เธฒเธ™เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข ยท เธชเธดเธ—เธ˜เธดเธกเธฒเธเธกเธฒเธขเธชเธณเธซเธฃเธฑเธšเธชเธกเธฒเธŠเธดเธ เธ„เน‰เธ™เธซเธฒเธญเธนเนˆเธ‹เนˆเธญเธกเธฃเธ–เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธกเธ™เธธเธฉเธขเนŒเน€เธ‡เธดเธ™เน€เธ”เธทเธญเธ™เธ›เธฃเธฐเธเธฑเธ™เธ เธนเธกเธดเธ เธฒเธ„เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธชเธณเธซเธฃเธฑเธšเธœเธนเน‰เธซเธเธดเธ‡ เธ›เธฃเธฐเธเธฑเธ™เธŠเธฑเน‰เธ™ 1 เธฃเธฒเธ„เธฒเธ–เธนเธ - เธ”เธญเธเน€เธšเธตเน‰เธข 0% เธœเนˆเธญเธ™เธชเธšเธฒเธข 6 เน€เธ”เธทเธญเธ™โ€Ž เธ›เธฃเธฐเธเธฑเธ™เธญเธญเธ™เน„เธฅเธ™เนŒ เธœเธกเธเน‡เธ‚เธฒเธขเธ™เธฐ - 724.CO.TH เธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข เธฃเธ–เธขเธ™เธ•เนŒ เธŠเธฑเน‰เธ™ 3 เธ˜เธ™เธŠเธฒเธ•เธด โ€Ž เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธŠเธฑเน‰เธ™1 เธˆเธฒเธ เธ—เธดเธžเธขเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข เธกเธฑเนˆเธ™เธ„เธ‡ เธญเธธเนˆเธ™เนƒเธˆ เธฃเธฒเธ„เธฒเน„เธกเนˆเนเธžเธ‡เธญเธขเนˆเธฒเธ‡เธ—เธตเนˆเธ„เธดเธ” เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเน€เธฅเธข เธ—เธดเธžเธขเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธข ยท 30 เธชเธฒเธ‚เธฒเธ—เธฑเนˆเธงเธ›เธฃเธฐเน€เธ—เธจ ยท เน€เธ„เธฅเธกเธœเนˆเธฒเธ™ App ยท เน€เธŠเน‡เธ„เน€เธšเธตเน‰เธขเธŸเธฃเธต 24 เธŠเธก ยท เธ›เธฃเธฐเธเธฑเธ™เธฃเธ–เธขเธ™เธ•เนŒเธญเธญเธ™เน„เธฅเธ™เนŒ เธ›เธฃเธฐเธเธฑเธ™ 3+ เน€เธฃเธดเนˆเธก 4,xxx เธšเธ‹เธทเน‰เธญ เธžเธฃเธš เธญเธญเธ™เน„เธฅเธ™เนŒเธ›เธฃเธฐเธเธฑเธ™เธ เธฑเธขเธฃเธ–เธขเธ™เธ•เนŒ Tip Ladyเน€เธŠเน‡เธ„เธฃเธฒเธ„เธฒ เธ›เธฃเธฐเธเธฑเธ™เธฃเธ– เธŠเธฑเน‰เธ™ 1
tomsnorge September 19, 2017
Hvem bรฆrer toms sko Pรฅ Tomnok.com finner du et stort utvalg av sko fra TOMS til bรฅde dame og herre. Vi har fri frakt og rask leveringstid. Hvor รฅ fรฅ toms sko Toms sko baby Kjรธp Svarte Toms sko i Nordens ledende skobutikk pรฅ nettet. Prรธv skoene hjemme med fri retur, 30 dagers รฅpent kjรธp og prisgaranti Toms sko brun. toms sko duffy sko gold toms shoes hรธgl sko kรธb toms sko men's toms shoes norge sko rimelige sko shop toms shoes sko salg skobutikk pรฅ nett norge toms barn Toms sko hk Sammenlign priser pรฅ Toms Classics Canvas Slip-On (Dame) Fritidssko og sneaker. Finn beste pris og les ... toms 2017 Lille Vinkel Sko, i, 649,-. TOMS Classic-d-60 gul Toms sko kostnad Toms sko polska FRI FRAKT OG RETUR โ€“ Kjรธp sko pรฅ nett โ€“ Velkommen til Zalando โ€“ Nettbutikken med Norges stรธrste utvalg av sko til dame, herre og barn โ€“ Gjรธr en god Toms sko riyadh sko tenis toms toms ayakkabฤฑ modelleri toms eshop toms footwear toms online kaufen toms pris toms sandaler toms shoes wiki Toms Solbriller Toms sko vurderinger De er store i stรธrrelsen, billige toms jeg bruker 37-38, litt avhening av type sko og merke, bestilte str ... Nรฅ har jeg kjรธpt Toms i str 6,5 og bruker 37 til vanlig. are toms sold in stores toms Kvinner toms sko billige toms sko sort toms uk topaz sko tom toms schuhe urban sko volcom sko toms Menn billige toms sko Fine og behagelige espadrillos i blรฅ tekstil, fra TOMS. Myk og bekvem innersรฅle i skinn. Sko for en bedre morgendag. Hvis du kjรธper et par, gir TOMS i sin t. black toms shoes toms norge toms salg charity shoes Sammenlign priser og lรฆs anmeldelser af toms 2018. Klik her og find den bedste pris nu! converse sko billig
DwightRes September 14, 2017
Aakbwobbm skvxuqlme http://erosuchki.com/blondinki/3694-sisyastaya-hhh-blondinochka-busty-hanna-na.html ะกะธัััั‚ะฐั ั…ั…ั… ะฑะปะพะฝะดะธะฝะพั‡ะบะฐ Busty Hanna ะฝะฐ ะบั€ั‹ะปัŒั†ะต - ัั€ะพั‚ะธั‡ะตัะบะธะต ั„ะพั‚ะพ ะšะฐะบ ะถะตะฝั‰ะธะฝั‹ ะผะฐัั‚ัƒั€ะฑะธั€ัƒัŽั‚ http://erosuchki.com/masturbaciya/3023-kak-zhenschiny-masturbiruyut.html http://erosuchki.com/razdvinula/2203-razdvinutye-bulki.html ะ ะฐะทะดะฒะธะฝัƒั‚ั‹ะต ะฑัƒะปะบะธ http://erosuchki.com/bolshie-siski/31-bolshaya-grud-lyubiteley.html ะ‘ะพะปัŒัˆะฐั ะณั€ัƒะดัŒ ะปัŽะฑะธั‚ะตะปะตะน ะ”ะตะฒัƒัˆะบะฐ ะฝะฐ ะบั€ะพะฒะฐั‚ะธ ะพะฑะฝะฐะถั‘ะฝะฝะฐั http://erosuchki.com/na-krovate/2123-devushka-na-krovati-obnazhennaya.html
AndreiTal September 11, 2017
ยซะกั‚ัƒะดะธั ะปะตัั‚ะฝะธั†ยป ั ะณะพั‚ะพะฒะฝะพัั‚ัŒัŽ ะฒั‹ะฟะพะปะฝะธั‚ ะปัŽะฑะพะต ะฒะฐัˆะต ะฟะพะถะตะปะฐะฝะธะต, ั‚ะฐะบ ั‡ั‚ะพ ะฒั‹ ะผะพะถะตั‚ะต ะทะฐะบะฐะทะฐั‚ัŒ ะปะตัั‚ะฝะธั†ัƒ http://www.ladder-spb.ru ะดะพะฒะตั€ะธะฒ ัั‚ะพ ะฝะฐัˆะธะผ ะฒั‹ัะพะบะพะบะฒะฐะปะธั„ะธั†ะธั€ะพะฒะฐะฝะฝั‹ะผ ะผะฐัั‚ะตั€ะฐะผ. ะšั€ะพะผะต ั‚ะพะณะพ, ะผั‹ ะผะพะถะตะผ ะฟั€ะตะดะปะพะถะธั‚ัŒ ะธะทะณะพั‚ะพะฒะปะตะฝะธะต ะพั‚ะดะตะปัŒะฝั‹ั… ัะปะตะผะตะฝั‚ะพะฒ ัั‚ะพะน ะบะพะฝัั‚ั€ัƒะบั†ะธะธ (ะฑะฐะปััะธะฝั‹, ะฟะตั€ะธะปะฐ, ะฟะพั€ัƒั‡ะฝะธ), ะฟั€ะธะผะตะฝัั ั‚ะพะปัŒะบะพ ัะปะธั‚ะฝั‹ะต ัะพั€ั‚ะฐ ะดั€ะตะฒะตัะธะฝั‹, ั€ะตะทะฝั‹ั… ะฒะธะดะพะฒ: ะดัƒะฑ, ะปะธัั‚ะฒะตะฝะฝะธั†ะฐ, ะฑัƒะบ, ัะพัะฝะฐ. http://www.ladder-spb.ru - http://s016.radikal.ru/i337/1709/c8/b1bd7dee3b52.jpg
Orlandocic September 8, 2017
http://8m2j.capitation.us http://3s9o.capitation.us http://7u8s.capitation.us http://ch9.capitation.us http://57aa.capitation.us http://46z.capitation.us http://7tom.capitation.us http://bihy.capitation.us http://5m1e.capitation.us http://2x4o.capitation.us http://9v4f.capitation.us http://asu0.capitation.us http://6kwp.capitation.us http://r0l.capitation.us http://1d4l.capitation.us http://4j5q.capitation.us http://3o7.capitation.us http://80qx.capitation.us http://a5sp.capitation.us http://q7t.capitation.us http://6ajv.capitation.us http://avgj.capitation.us http://7c5t.capitation.us http://7b2m.capitation.us http://bf31.capitation.us http://7vdw.capitation.us http://5fog.capitation.us http://8iws.capitation.us http://64w8.capitation.us http://5ywa.capitation.us http://2r3e.capitation.us http://80lo.capitation.us http://8d97.capitation.us http://9bwx.capitation.us http://7zvw.capitation.us http://92hn.capitation.us http://4l4k.capitation.us http://6m7v.capitation.us http://atv3.capitation.us http://32jh.capitation.us http://1ng6.capitation.us http://3v0.capitation.us http://amex.capitation.us http://55b8.capitation.us http://11mk.capitation.us http://6sqp.capitation.us http://9m6q.capitation.us http://4pnm.capitation.us http://kfk.capitation.us http://az6w.capitation.us http://7ba1.capitation.us http://3hfg.capitation.us http://3pbh.capitation.us http://1mu4.capitation.us http://10aq.capitation.us http://2w2s.capitation.us http://86js.capitation.us http://ac75.capitation.us http://96t.capitation.us http://33pd.capitation.us http://67fs.capitation.us http://a1ns.capitation.us http://7wvs.capitation.us http://95b6.capitation.us http://8idh.capitation.us http://2pr0.capitation.us http://4lu8.capitation.us http://7n6y.capitation.us http://2s65.capitation.us http://b1hd.capitation.us http://b69r.capitation.us http://8btb.capitation.us http://3san.capitation.us http://61xf.capitation.us http://4nja.capitation.us http://3kfy.capitation.us http://6zxl.capitation.us http://2nvp.capitation.us http://fxx.capitation.us http://3x9r.capitation.us http://8wgi.capitation.us http://pmj.capitation.us http://oze.capitation.us http://8rcj.capitation.us http://4gvo.capitation.us http://9er3.capitation.us http://b9kq.capitation.us http://62mx.capitation.us http://312y.capitation.us http://1405.capitation.us http://7af2.capitation.us http://5qfg.capitation.us http://23m9.capitation.us http://39xg.capitation.us http://90so.capitation.us http://8o8y.capitation.us http://1046.capitation.us http://66cf.capitation.us http://2w2a.capitation.us http://3b0l.capitation.us http://311i.sullenness.us http://24g0.sullenness.us http://le4.sullenness.us http://2u9g.sullenness.us http://569l.sullenness.us http://69eh.sullenness.us http://btf8.sullenness.us http://9gvy.sullenness.us http://76vm.sullenness.us http://9xky.sullenness.us http://33ck.sullenness.us http://aqtu.sullenness.us http://42sp.sullenness.us http://855m.sullenness.us http://aof0.sullenness.us http://121k.sullenness.us http://ag1j.sullenness.us http://9epi.sullenness.us http://2guo.sullenness.us http://593n.sullenness.us http://alqd.sullenness.us http://9jld.sullenness.us http://36ec.sullenness.us http://1kff.sullenness.us http://2qho.sullenness.us http://5mai.sullenness.us http://200p.sullenness.us http://1c2.sullenness.us http://7quj.sullenness.us http://kzv.sullenness.us http://4vqb.sullenness.us http://7a6h.sullenness.us http://by8m.sullenness.us http://bttk.sullenness.us http://au1u.sullenness.us http://5yr1.sullenness.us http://71pj.sullenness.us http://4b47.sullenness.us http://5i45.sullenness.us http://8hoi.sullenness.us http://6vn6.sullenness.us http://6ijv.sullenness.us http://8djx.sullenness.us http://8h50.sullenness.us http://77jx.sullenness.us http://180z.sullenness.us http://9vkl.sullenness.us http://33j5.sullenness.us http://147o.sullenness.us http://ao7n.sullenness.us http://81sh.sullenness.us http://bg26.sullenness.us http://a81n.sullenness.us http://9xuj.sullenness.us http://ay1o.sullenness.us http://509y.sullenness.us http://bb1y.sullenness.us http://agm5.sullenness.us http://59c3.sullenness.us http://43xh.sullenness.us http://bcpz.sullenness.us http://192w.sullenness.us http://2ceq.sullenness.us http://bexo.sullenness.us http://16bx.sullenness.us http://58f.sullenness.us http://t1a.sullenness.us http://6f06.sullenness.us http://asdf.sullenness.us http://46qf.sullenness.us http://6o8b.sullenness.us http://q7k.sullenness.us http://2mn5.sullenness.us http://1v23.sullenness.us http://44tz.sullenness.us http://1lca.sullenness.us http://b3ft.sullenness.us http://9m56.sullenness.us http://bvkq.sullenness.us http://8xki.sullenness.us http://7hw0.sullenness.us http://2h6y.sullenness.us http://4g4v.sullenness.us http://6w6c.sullenness.us http://hel.sullenness.us http://631l.sullenness.us http://6zpz.sullenness.us http://9h69.sullenness.us http://h4w.sullenness.us http://apfa.sullenness.us http://5c73.sullenness.us http://7noe.sullenness.us http://5jda.sullenness.us http://4g8o.sullenness.us http://9o1e.sullenness.us http://3320.sullenness.us http://1s3s.sullenness.us http://7ex0.sullenness.us http://3dfg.sullenness.us http://5ni1.sullenness.us
jabronald August 27, 2017
Brug evt 350 usd to dkk hvis du ikke kan omregne i hovedet eller ikke kender kursen :)
Albertges July 27, 2017
ะบัƒะฟะธั‚ัŒ ะฝะฐั€ะบะพั‚ะธะบะธ ะบั€ะฐัะฝะพัั€ัะบ ะบัƒั€ะธั‚ะตะปัŒะฝะฐั ัะผะตััŒ ัะพะปัŒ ะบัƒะฟะธั‚ัŒ ะฝะฐั€ะบะพั‚ะธะบะธ ะฒ ัƒะบั€ะฐะธะฝะต ะฟั€ะพัั‚ะธั‚ัƒั‚ะบะธ ะบะธะตะฒะฐ ะฟั€ะพัั‚ะธั‚ัƒั‚ะบะธ ะพะผัะบะฐ ะบัƒั€ะธั‚ะตะปัŒะฝั‹ะต ัะผะตัะธ ะบัƒะฟะธั‚ัŒ
KenneeFloot March 25, 2017
ะœะพะถะฝะพ ะฟะพะฟะพะดั€ะพะฑะฝะตะน? ะŸ.ะก. ะŸั€ะพัˆั‘ะป ะฝะตะดะฐะฒะฝะพ ะผั€ั‚ ั…ะธะผะบะธ ั†ะตะฝั‹ ะฟั€ะธะตะผะปะธะผั‹ะต.
DavedeNiG March 25, 2017
ะœะพะถะฝะพ ะฟะพะฟะพะดั€ะพะฑะฝะตะน? ะŸ.ะก. ะบัƒะฟะธั‚ัŒ ะฟะพะปะธั ะพัะฐะณะพ ะฒ ะœั‹ั‚ะธั‰ะธ
remontoknaRape March 11, 2017
ะŸั€ะพัะฐะดะบะฐ, ะทะฐั‚ะธั€ะฐะฝะธะต, ะฟั€ะพะณะธะฑะฐะฝะธะต ะฟะพะฒั€ะตะถะดะตะฝะธะต ะณะตั€ะผะตั‚ะธั‡ะฝะพัั‚ะธ (ะฟั€ะพะดัƒะฒะบะฐ, ัะบะฒะพะทะฝัะบ) ัั‚ะฒะพั€ะพะบ โ€“ ะฒัะต ัั‚ะพ ัั‚ะฐะฝะดะฐั€ั‚ะฝะพะต ัะพะฑั‹ั‚ะธะต, ั‚ะพั‡ั‚ะพ ัะพ ะฒั€ะตะผะตะฝะตะผ ะฒะพะทะฝะธะบะฐะตั‚ ะฒะพ ะฟะพั‡ั‚ะธ ะฒัะตั… ะผะตั‚ะฐะปะปะพะฟะปะฐัั‚ะธะบะพะฒั‹ั… ะพะบะพะฝะฝั‹ั… ั€ะฐะผะฐั… ะธ ะดะฒะตั€ัั…. ะ˜ ะธั… ัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพ ั€ะตะบะพะผะตะฝะดัƒะตั‚ัั ะพั‚ะปะฐะถะธะฒะฐั‚ัŒ (ะพะฑัะปัƒะถะธะฒะฐั‚ัŒ), ะดะปั ั‚ะพะณะพ ั‡ั‚ะพะฑั‹ ะธะทะฑะตะถะฐั‚ัŒ, ะฒ ะดะฐะปัŒะฝะตะนัˆะตะผ, ะดะพั€ะพะณะพัั‚ะพัั‰ะตะณะพ ั€ะตะผะพะฝั‚ะฐ. ะญั‚ะพ ะบะฐะบ ะฒ ะฐะฒั‚ะพ ัƒัะปัƒะณะฐ ะฟั€ะพั…ะพะถะดะตะฝะธั ั‚ะตั…ะฝะธั‡ะตัะบะพะณะพ ะพัะผะพั‚ั€ะฐ : ะฒ ัะปัƒั‡ะฐะต, ะตัะปะธ ะฑะตะท ะพะฟะพะทะดะฐะฝะธั ะฝะต ัะผะตะฝะธั‚ัŒ ะผะฐัะปะพ, ะฝะต ัƒัั‚ั€ะฐะฝะธั‚ัŒ ัั‚ัƒะบ ะธะปะธ ะธะฝะพั€ะพะดะฝั‹ะน ัˆัƒะผ โ€“ ะฟะพัะปะตะดัั‚ะฒะธั ะผะพะณัƒั‚ ะฑั‹ั‚ัŒ ะฟะตั‡ะฐะปัŒะฝั‹ะผะธ ะธะปะธ ะธะฝะฐั‡ะต ะณะพะฒะพั€ั ั‚ั€ะฐะณะธั‡ะตัะบะธะผะธ. (ะบ ะฟั€ะธะผะตั€ัƒ ะทะฐะผะตะฝะฐ ะผะฐัะปะฐ ะตะดะธะฝะพะถะดั‹ ะฒ ะณะพะด ะธะปะธ ั€ะฐะท ะฒ 10000 ะบะผ. โ€“ ะฟะพ ัั‚ะพะธะผะพัั‚ะธ ะดะปั ะฟั€ะธะผะตั€ัƒ 957 ะณั€ะฝ. ะžะดะฝะฐะบะพ ะธัะฟั€ะฐะฒะปะตะฝะธะต ะดะฒะธะณะฐั‚ะตะปั ัั‚ะพะธั‚ 9557 ะณั€ะฝ.) ะฃ ะฝะฐั ะดะตะนัั‚ะฒัƒัŽั‚ ะฒั‹ัะพะบะพะฟั€ะพั„ั„ะตัะธะพะฝะฐะปัŒะฝั‹ะต ะผะฐัั‚ะตั€ะฐ, ะบะฐะบะธะต ะฟะพะผะพะณัƒั‚ ั€ะตัˆะธั‚ัŒ ะปัŽะฑัƒัŽ ะทะฐั‚ั€ัƒะดะฝะตะฝะธะต ะธ ัƒะฑะปะฐะถะธั‚ัŒ ะดะฐะถะต ัะฐะผะพะณะพ ะฟั€ะธั…ะพั‚ะปะธะฒะพะณะพ ะทะฐะบะฐะทั‡ะธะบะฐ ะ—ะฐะบะฐะทั‹ะฒะฐะนั‚ะต ั€ะตะผะพะฝั‚ ะฟะปะฐัั‚ะธะบะพะฒั‹ั… ะพะบะพะฝ ะบะธะตะฒ ัƒ ะฝะฐั, ัƒ ะฟั€ะพั„ั„ะตัะธะพะฝะฐะปะพะฒ. ะšัƒะฟะธั‚ัŒ ัƒะฟะปะพั‚ะฝะธั‚ะตะปัŒ ะดะปั ะพะบะพะฝ ัะฐะผั‹ะต ะปัƒั‡ัˆะธะต ั†ะตะฝั‹ ัƒ ะฝะฐั!
natKanPrOrd March 8, 2017
http://hd02.ru/comedy/340-kuhnya-poslednyaya-bitva-2017.html ะšัƒั…ะฝั. ะŸะพัะปะตะดะฝัั ะฑะธั‚ะฒะฐ ะะฐ ั‚ะตะปะตั„ะพะฝ ะ’ ั…ะพั€ะพัˆะตะผ ะบะฐั‡ะตัั‚ะฒะต zerx ัะผะพั‚ั€ะตั‚ัŒ ะพะฝะปะฐะนะฝ ะฟะพะปะฝั‹ะน ั„ะธะปัŒะผ http://forum.kerman.ir/index.php?action=profile;u=294752 - ะšัƒั…ะฝั. ะŸะพัะปะตะดะฝัั ะฑะธั‚ะฒะฐ ะะฐ ั‚ะตะปะตั„ะพะฝ ะบะฐั‡ะตัั‚ะฒะพ ะพะฝะปะฐะนะฝ ะฟะพะปะฝั‹ะน ั„ะธะปัŒะผ
PrivatProxygus March 7, 2017
ะ‘ั‹ัั‚ั€ั‹ะต ะฟั€ะพะบัะธ IPv6, IPv4 & Socks5 - http://WinGate.Me
wvycfwok March 6, 2017
level subtract sirloin aretha coloring rnyukqct philips whoever thanking pariah hakrwomms afternoons drunkenly haverstock http://reifensitepqi.xyz priorities deng kwong agua applications
Andysop March 5, 2017
ะŸั€ะตะดัั‚ะฐะฒะปััŽ ะ’ะฐะผ: ั…ั€ัƒะผะตั€, ะฟั€ะพะณั€ะฐะผะผะฐ ะดะปั ะฟะพัั‚ะธะฝะณะฐ ะฒ ะฑะปะพะณะฐั…, ะผะพะณัƒั‰ะธะน ััƒั‰ะตัั‚ะฒะตะฝะฝะพ ะทะฐั€ะฐะฑะพั‚ะฐั‚ัŒ ะผะธะปะปะธะพะฝั‹ ะถะดะตั‚ ะ’ะฐั! ะฐะฒั‚ะพัะฐะฑะผะธั‚ั‚ะตั€ XRumer
AllaDemina March 1, 2017
http://avtoservis178.ru ะธะฝั„ะพั€ะผะฐั†ะธั akadem-remont
PrivatProxygus March 1, 2017
ะกั‚ะฐะฑะธะปัŒะฝั‹ะต ะฟั€ะพะบัะธ IPv6, IPv4 & Socks5 - http://WinGate.Me
BigBonusTer February 19, 2017
Get NoW your $1500 Bonus! -> http://breakingnews.goohle.co.ua
Vadymslasy February 17, 2017
https://auto-brand.com.ua/ - https://auto-brand.com.ua/
Andysop February 16, 2017
ะŸั€ะตะดัั‚ะฐะฒะปััŽ ะ’ะฐะผ: ะฐะฒั‚ะพะผะฐั‚ะธั‡ะตัะบะธะน ะฟะพัั‚ะตั€ XRumer, ะธะผะตัŽั‰ะธะน ะฒะพะทะผะพะถะฝะพัั‚ะธ ะฒั‹ัะพะบะพัั„ั„ะตะบั‚ะธะฒะฝะพ ะพััƒั‰ะตัั‚ะฒะธั‚ัŒ ะฒะฐัˆะธ ะผะตั‡ั‚ั‹ ั‚ะตะฟะตั€ัŒ ะดะพัั‚ัƒะฟะตะฝ! ะฐะฒั‚ะพัะฐะฑะผะธั‚ั‚ะตั€ ั…ั€ัƒะผะตั€
RXEmile February 14, 2017
ะ”ะพะผ,ru ะฟั€ะพะฒะฐะนะดะตั€ ะะพะผะตั€ ะฟั€ะพะฒะฐะนะดะตั€ะฐ ะดะพะผ ั€ัƒ ั„ะธะปัŒะผั‹
mivsetut.org February 11, 2017
Hi there, of course this piece of writing is actually nice and I have learned lot of things from it about blogging. thanks.
Avdyshevo February 10, 2017
Please rate my video on YouTube http://0gogo.ru/it
Jaremchuko February 1, 2017
Please rate my video on YouTube http://vli.su/youtube
madden mobile coins August 31, 2016
Amazing Site, Maintain the fantastic work. Thank you so much!. madden mobile coins http://wanc.org.za/forum/topic/1118
cheap madden 17 coins August 28, 2016
Wow because this is great job! Congrats and keep it up cheap madden 17 coins http://www.bedfordcountytrader.com/classifieds/item/12088
RobertOHamff August 4, 2016
Hello to every one, for the reason that I am truly keen of reading this webpage's post to be updated on a regular basis. It carries nice data.
tani kredyt gotรณwkowy June 28, 2016
Thank's great post.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application