NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Graph and Data AnalysisHow to Talk Like a President

Graph and Data AnalysisHow to Talk Like a President

Michael Link
Posted on May 17, 2020
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

RShiny App | LinkedIn | GitHub 

Summary (3 min read):

The United States is unquestionably unique in its relevance to the rest of the world. This takes the form of academic and technological leadership, disproportionate economic influence, and participation in conflicts abroad (solicited and unsolicited). For better or for worse, many policy advocates and international leaders stand to benefit from knowing how frequently their agenda or country is mentioned. 

These same leaders previously had to consume secondary news sources or sit through time-intensive press briefings to cultivate their intuition on where they stood in the eyes of the President of the United States (POTUS). The aim of this project was to quantify the POTUS focus on various geographies and policies and let graph present this information in a time-efficient and digestible manner. 

Online dashboard

An online dashboard, which can be found here, was created to track:

  • which initiatives the George W. Bush White House prioritized, 
  • which countries and states were emphasized, 
  • and how the economy, presidential approval, and public focus responded over time.

A variety of insights arise from the How to Talk Like a President online dashboard. These insights are detailed in the following list and photo gallery. Featured stories include:

  • Social Security vs. Google Search Trends
    • Bush unsuccessfully championed Social Security reform
  • Recession vs. S&P 500
    • Frequent mention of recession at the start of economic downturn and after Lehman Brothers collapse
  • Recession vs. Google Search Trends
    • High correlation between the White House and public attention
  • Iraq vs. S&P 500
    • Military-Industrial Complex perhaps catalyzed economic growth
  • Climate Change vs. Google Search Trends
    • In the year following Al Goreโ€™s โ€˜An Inconvenient Truthโ€™, climate change became a buzz phrase
  • Afghanistan vs. Presidential Approval
    • Post 9-11, Bush saw his approval ratings skyrocket

Gallery of Graph (visit App here for dynamic graph):

  • Social Security vs. Google Search Trends
  • Recession vs. S&P 500
  • Recession vs. Google Search Trends
  • Iraq vs. S&P 500
  • Climate Change vs. Google Search Trends
  • Afghanistan vs. Presidential Approval

The examples illustrated above demonstrate the potential and value of using press briefing text data. However, the primary value of this project comes not from these discrete stories. The core value of this project lies in that it demonstrates the capability of using untapped and untraditional datasets to supplement human intuition. Data-driven decision making will continue to permeate into a whole slew of industries and novel applications.

Detailed Project Overview (6 min read):

Problem Statement:

It is difficult to quantify Presidential temperament towards various policy initiatives, states, and countries. Without quantitative analysis, national and international leaders are forced to digest secondary news sources or to sit through time-intensive press briefings.

Data used: 

  • Press Briefing Transcripts
  • Presidential Approval Ratings
  • Google Trends
  • S&P 500

Skills Displayed:

  • R
  • Python
  • Jupyter Notebook
  • Data Visualization
  • Scrapy Web Scraping
  • Shiny App Development
  • Google Trend API

Technical Process:

The โ€œHow to Talk Like a Presidentโ€ online dashboard was created using a combination of python web scraping and R Shiny app development. The press briefings from George W. Bushโ€™s white house website were scraped using Scrapy. The customized Scrapy script took 15 minutes to collect and process over 1,762 press briefing transcripts from his 8 years as president. To manually copy and paste this information into excel would have taken approximately 9.5 hours. 

A major technical challenge was that over the course of George W. Bush's presidency, the White House website and article formatting changed on multiple occasions. Put more technically, the web scraping 'Spider' that I initially encoded had difficulty parsing html code that changed in form and organization throughout the website. I had to examine in depth the articles and corresponding html code that caused the scraping to come to a halt.

After understanding the various permutations of html code I was able to encode my spider to handle these exceptions. Additionally, one permutation of html code did not allow me to "cleanly" scrape the press briefing text. I had to scrape a large amount of "messy" html code and use regular expressions and string replacement to get rid of undesirable html text ("\r", "\n",  "   ",  "\xa0", etc.) After addressing these technical hurdles I was able to move on to text processing. 

Data Analysis

Within a Jupyter notebook, this text data was analyzed to determine the temporal occurrence of 300 keywords (Russia, Iraq, Climate Change, etc.). These 300 keywords were again analyzed via a Google Trend API. Google trends rate a keyword's search popularity on a scale of 0 to 100. I created a function to loop through a list of all 300 keywords, request U.S. (not global) google trend data for the whole history of google, and save the resulting data into a csv.

Alternatively, I could have pulled data for all 300 keywords at the same time, but that would have ranked keyword popularity in relation to all other words. In effect, for many keywords the popularity would have been approximately zero. I wanted to avoid this because my ultimate goal was to determine "how public attention has evolved on a given topic over time" and not "how public attention on a given topic compares to all other topics".

The temporal occurrence of keywords from the White House represents what the POTUS has emphasized over time. The temporal occurrence of keywords from the Google Trend API represents the publicโ€™s focus. White House emphasis was also compared against the S&P 500 index as a measure of economic health. White house emphasis was also compared against the Gallup presidential approval ratings as a measure of the president's popularity over time. Google Trends, approval ratings, and S&P 500 valuation data were all conditioned to conform to the monthly pandas date-time frequency within the presidential briefings.

R Shiny Dashboard

While building the R Shiny dashboard I wanted to create two tabs which allowed users to explore presidential focus by geography and by policy categories. With respect to the geography tab I encoded a radio button and drop down menus that allow the user to search by countries of the world and by U.S. states. Within the Policy tab I created linked drop down menus that allowed the users to look at groupings of keywords within a given policy category (Economic affairs, social welfare, environment, etc.) I figured this functionality would help users find the topics they cared about and would help them not get overwhelmed by visually filtering through all policy related keywords.

Target Audience:

  • Policy Advocates
  • State and International Leaders
  • Historians / General Public

Objective:

To quantify Presidential temperament to understand:

  • Which initiatives the White House has prioritized
  • Which countries and states are emphasized
  • How the economy, presidential approval, and public focus have shifted over time

Business Value of Objective:

If you are the steward of a given policy or nation it behoves you to understand the messaging of the most powerful nation. By doing so, you can learn from the past and evaluate your current โ€œbrand perceptionโ€.

Conclusion

The core value of this project lies in that it demonstrates the capability of using untapped and untraditional datasets to supplement human intuition. In the case of the How to Talk Like a President online dashboard, users are able to quantitatively confirm pre-existing intuitions and are assisted in cultivating novel insights.

Featured Image Credit:
  • American Flag by Ken Jones
    • Link to Photo, Link to Ken Jones Flickr, Link to Creative Common License

About Author

Michael Link

Michaelโ€™s background is in ecological and water resources engineering. He began his career as a water resources engineer in a Fortune 500 consulting firm. Having worked to industry-standard analytical techniques and software, he discovered that he had a...
View all posts by Michael Link >

Related Articles

AWS
Automated Data Extraction and Transformation Using Python, OpenAI, and AWS
Python
Can the data from EA's FIFA Potential Rating Help Bettors?
Data Visualization
Using Data to Get Cats Adopted on petfinder.com
Data Visualization
Wine 101: Gathering Data From Vivino
Python
Using Data to Analyze The Library of Audible

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application