NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Kaggle Competition: House Price Prediction 2017

Kaggle Competition: House Price Prediction 2017

Wann-Jiun Ma and Sharan Naribole
Posted on Jan 24, 2017
Contributed by Wann-Jiun Ma and Sharan Naribole. They are currently attending the NYC Data Science Academy Online Data Science Bootcamp program. This post is based on their fourth class project - Machine Learning. We balance the workload of the project members and finish the project (excluding writing blog post) in two weeks (part-time) by the same people.

Introduction

We have learned so many different machine learning algorithms from supervised, unsupervised to reinforcement learning. Now, it's time to use them to solve a real problem. We found this new and interesting competition on Kaggle. It is not a fancy competition and its goal is to predict house prices in Ames, Iowa using different features of houses collected in 2010. There are 79 explanatory features describing every aspect of residential homes in Ames, Iowa. We found this competition friendly because the detailed explanatory features have been fully provided to the participants. And it is a great opportunity to practice our knowledge of advanced machine learning such as XGboost and other ensemble and stacking approaches. Our strategy is to stand on the shoulders of giants, i.e., utilize public feature engineering and machine learning models posted at Kaggle such as
-- [Feature engineering] https://www.kaggle.com/humananalog/house-prices-advanced-regression-techniques/xgboost-lasso
-- [Stacking] https://www.kaggle.com/eliotbarr/house-prices-advanced-regression-techniques/stacking-starter
-- [General framework] http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-clobber/
-- [General framework] http://blog.kaggle.com/2016/07/21/approaching-almost-any-machine-learning-problem-abhishek-thakur/
and also blog posts from other data scientists such as
-- [General framework] http://www.slideshare.net/OwenZhang2/tips-for-data-science-competitions
-- [Ensembling] http://mlwave.com/kaggle-ensembling-guide/
and write our own codes to further improve the prediction score. We are currently placed top 4% out of more than 3000 teams in this open Kaggle competition at the time of the machine learning project submission.

Exploratory Data Analysis

Let's first do EDA to gain some insights from our data. Let's plot the distribution of sale price (target). Figure shows that only a few houses are worth more than $500,000.

histo_priceSize of living area may be an indicator of house price. Figure shows that there are only a few houses are more than 4,000 square feet. This information may be used to filter out outliers.

histo_sizeAlso, linear distance of street connected to property may be a useful feature. We group by neighborhood and fill NA using the median of the group's linear distance. Figure shows that there are only a few outliers having a distance of less than 40 feet.

histo_streetIt may be useful to characterize the properties by the months in which they are sold. Figure shows that May to August are the hottest months in terms of number of sales.

histo_monthWe also found some numerical features which are highly correlated with the sale price and plot the correlation matrix of these features. This information is useful to determine the correlation of features. We all know that multicollinearity may make it more difficult to make inferences about the relationships between our independent and dependent variables.

correlation

These are some basic EDA for our house price data set. In the next section, we are going to perform feature engineering to prepare our train set and test set for machine learning.

Featuring Engineering

We consider numerical and categorical features separately. The numerical features of our data set do not directly lend themselves to a linear model and the features violate some of the necessary assumptions for regression such as linearity, constant variance or normality. Therefore, we perform log(x+1) transformation for our numerical features, where x is any numerical feature, to make numerical features more normal.

Also, it is a good idea to scale our numerical features.

For categorical features, we perform several transformations as summarized below.

-- Fill NA using zero.

-- Group by neighborhood for linear feet of street connected to property and fill NA using the median of each group (neighborhood).

-- Transform "Yes" and "No" features such as having central air conditioning or not to one and zero, respectively.

-- Using "map" to transform quality measurements to ordinal numerical features.

-- Perform one-hot encoding on nominal features.

-- Sharan's three strategies. [Add the strategies here]

We also generate several new features summarized below.

-- Generate several "Is..." or "Has..." features based on whether a property "is..." or "has...". For example, since most properties have standard circuit breakers, we create a column "Is_SBrkr" to characterize those properties having standard circuit breakers.

-- Generate some aggregated quality measures to simplify the existing quality features. We aggregate those features into three broad classes, bad/average/good, and encode them to values 1/2/3, respectively.

-- Generate features related to time. For example, we generate a "New_House" column by considering if the house was built and sold in the same year.

For dealing with outliers, we filter out the properties having a living area of more than 4,000 square feet above grade (ground).

There are also some minor features considered here. The total number of features is 389 and we have 1456 and 1459 samples for the training and test sets, respectively. Now, let's do machine learning.

Ensemble Methods

We consider six machine learning models: XGboost, Lasso, Ridge, Extra Trees, Random Forest, GBM.

For each models, we perform grid search with cross-validation to find the best parameters for the corresponding models. For example, for Kernel Ridge,

We found that Random Forest, GBM, and Extra Trees have serious overfitting problem.

Finally, we use an ensemble model which consists of Lasso, ridge, and XGboost with equal weights as our model.

Stacking

We consider out-of-folder stacking. At the first level, we use XGboost, Random Forest, Lasso, and GBM as our models. At the second level, we use the outputs of the models from the first level as the new features and use XGboost as our combiner to train our model. We perform cross-validation for each model to find the best set of parameters.

Feature Selection

We consider feature importance provided by XGboost to select the important features.

selectinThe figure of feature importance shows that the feature importance decreases exponentially. We should consider using the most important features to train our model.

We use a loop to see how the score varies with different number of features included in the training set and set a threshold to determine which features we want to drop from the data set.

Conclusions

In two weeks (two people, part-time), we have done EDA, feature engineering, ensembling, stacking, and feature selection. We observed that there is a huge score jump from the score without featuring engineering to the one with feature engineering. The second score jump is from the score without ensembling to the one with ensembling. Out of folder stacking didn't improve the score too much. It may be because the models are already statistically equivalent. Since the data set is very small, to improve the prediction score, We can consider different featuring engineering such as using different distributions to create different features or using feature interaction to generate new features automatically.

About Authors

Wann-Jiun Ma

Wann-Jiun Ma (PhD Electrical Engineering) is a Postdoctoral Associate at Duke University. His research is focused on mathematical modeling, algorithm design, and software/experiment implementation for large-scale systems such as wireless sensor networks and energy analytics. After having exposed...
View all posts by Wann-Jiun Ma >

Sharan Naribole

Sharan Naribole is a PhD Candidate in Electrical & Computer Engineering department at Rice University supported by Texas Instruments Fellowship. Sharan's research focuses on next-generation Wireless Networks protocol design and experimentation. Sharan has undertaken data science internship at...
View all posts by Sharan Naribole >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses

Leave a Comment

Cancel reply

You must be logged in to post a comment.

feet problems February 8, 2017
Excellent post. ะ† wะฐs checkin constantly thั–s blog and I am impressed! Very helpful ั–nformation ั•pecifically thะต ast pะฐrt :) I care fโฒŸr sucาป information a lot. I was seeking this โฒฃarticular info forr ษ‘ very โ…ผong timแฅฑ. Thะฐnk yoีฝ and ะฌest oof luck.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application