NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Capstone > Archive Intimate Partner Violence News Documents

Archive Intimate Partner Violence News Documents

Tyler Wilbers
Posted on Jan 24, 2019

Project GitHub | LinkedIn:   Niki   Moritz   Hao-Wei   Matthew   Oren

The skills we demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

There are many resources for archiving incidents of "gun violence" that the media cites in news reports. However, there is a serious lack effort when it comes to tracking intimate partner violence (IPV) in the public domain. Unfortunately, because general gun violence archive involve reports of incidents across the nation where definitions of relationships and crimes that involve them differ, they suffer from being too broad for serious Intimate Partner Violence Intervention (IPVI) research. Also, because we know that a large number of serious IPV offences involve violence without firearms, the focus on incidents involving guns leaves them out.. These issues make it difficult to know the the true scope of IPV offences. Therefore, our team was tasked with engineering a prototype for archiving serious IPV incidents that would allow for a robust analysis of IPV while circumventing the problems introduced by using more general gun violence archives.

The Data

We decided to use a cross-section of the Gun Violence Archive to get URLs for violent offences that involved "significant others". Because we needed an alternative class to IPV, we also pulled URLs for violent offences that did not involve "significant others." From this we received about 3,200 URLs to IPV news documents and about 3,200 URLs for non-IPV news documents.

Now faced with the task of needing to scrape thousands of different domains with different page instructors, we developed a naive scrapper that would scrape bulk text from these URLs and validate that it was news content. From this we were able to collect a data set of news documents, 2729  labeled as IPV and 2720 labeled as non-IPV. This allowed us to get the volume of data suitable for training a language model that can categorize articles as being related to an IPV offense in real-time.

Feature Engineering

We used term frequency-inverse document frequency (TF-IDF) to engineer features for our classification model. TF-IDF is a measure of the amount of important information a word in a document provides relative to a corpus. This is achieved by calculating the product of term frequency (i.e. TF) and the inverse document frequency (i.e. IDF) for every word in the corpus. The formula for term frequency and inverse document frequency can take many forms. We used scikit-learn's TFIDF class, which uses the raw count to get the term frequency of each word in a document. Then it uses the following formula for inverse document frequency: ln(N/DF)+1, where N is the number of samples and DF is the number of documents that the word appears in. By default it then uses L2 norm to normalize the term vectors; this assure the scores are between 0 and 1.

So, for every word in the corpus we now have a score of how important that word is to each document. A high TF-IDF for a word w, indicates that w appears in the document but is rare across the corpus, and a low TF-IDF means w shows up in the document but is common in the corpus. A TF-IDF of zero means that the word does not show up in the document but does show up in the corpus. Now that we have useful numerical information about each document, we can begin to train a model that will be able to account how important each word is for a given class (i.e. IPV vs non-IPV).

The Model

We decided to utilize regularized logistic regression for the binary classification task at hand. We had enough data to run cross-validation and search for hyper-parameters that would help with reducing the variance with such a high-dimensional data set. This model slightly outperformed a multinational naive bayes model trained on CV.  The Logistic regression best model in the CV had a Rยฒ of .85.

The Prototype

With this model, we created a prototype application that can be used to automate the classification and archiving of IPV news articles. This was achieved by creating an interface of a news query API in Dash that will return information about an article including its URL.

By using Dash as an interface, even a low technically skilled end user can search the web for potential IPV articles, and download them to be saved in the IPV archive. When the user has inputted a manual query, she is presented with all matches in the form a a data frame.

She can then manually save articles to the global IPV archive that will grab the text via the same naive scraper used to get our training documents.

This process can also be automated. The button labeled "Automate IPV Articles" activates the IPV classification model.. Once clicked, it will return a data frame of articles along with a prediction score for how confident it is in its predicted label. The model has a probability estimate of 97.5% that the following article is about IPV.

At this point you can manually add the article to the IPV archive or add all article that meet a certain estimated probability threshold. For example, you can add all articles published on a certain day from a certain domain that have a probability estimate above .90 of being about IPV.

Conclusion

A full production version of this application could leverage additional models for more fine grained labeling and analysis. For instance, a member of our team created a model for labeling whether an the IPV incident is a repeat offence. Built into the archive is also the ability to scrape additional IPV articled from the Gun Violence Archive. So between keeping in sync with the Gun Violence Archive and the automated IPV search functionality, even the prototype archive has the potential to be a very robust resource for those analyzing intimate partner violence in the news.

About Author

Tyler Wilbers

View all posts by Tyler Wilbers >

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application