NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Web Scraping and Analysis of CPU and Graphic Cards on Newegg.com

Web Scraping and Analysis of CPU and Graphic Cards on Newegg.com

Xinyuan Wu
Posted on Nov 21, 2016

As 2016 Black Friday is just around the corner, this is the right time for people to upgrade their desktop. As a computer fan for years, I am aiming to explore the hardware that are selling trend on Newegg.com for my web scraping project. The questions that I am trying to answer are:

Which brand of CPU and GPU that currently sells the best, and how does the parameters of the hardware affect the price?

1. Introduction

When someone wants to check out a newly released hardware, Newegg.com is always the right place to go. The broad product line, great deals and good service makes this online retailer very popular among computer fans. The highly organized web structure also makes it well-suited for getting and comparing hardware parameters. Therefore I decided to scrape this website for all the data needed for analysis.

sampleproduct

Figure 1. Left: AMD and Intel are competing for CPU market. Right: Nvidia's flagship graphic card---Titan X Pascal

CPU and graphic card, in my opinion, are top-2 hardware in a desktop that directly determine its computing power. Hundreds of channels can be found on Youtube that benchmarking the gaming performance for each CPU and graphic card product everyday. Besides video gamers, data scientists need good computers too. A good CPU and save great amount of computation time when working on a relatively large dataset. More interestingly, GPU computing via graphic cards is going mainstream at this moment. The reason behind this is that a modern GPU will have far more cores than a CPU, thus make GPU well-suited for parallel computing. Today more and more people use high-end graphic cards to perform heavy computational work, like training models for neural network.

2. Web Scraping

neweggpages

Figure 2. Introduction to Newegg pages and the web structure

As shown above, when searching for a type of desktop components, a page consisting of 36 products will be displayed. The URL contains the information like page number, number of products in a page, and the criteria for sorting the products. The main panel consists of 36 icons. When clicking the "View Detail" bottom, you will be directed to single product page. In this page, most of the parameters can be found under "Specification" tab.

crawldiagram

Figure 3. Web scraping plan for extracting CPU and graphic cards information

With the web structure in mind, the strategy for scraping is clear. Python Scrapy package was selected for web scraping job. The workflow of web spider can be briefly described as:

  • Generate a list of URLs ranging from the first page to the last page.
  • At each page, grab the customer rating data, generate a ranking number for each product, filter the undesired (Refurbished and Open box) item, and extract the URL for each product.
  • Go to each product page, grab the hardware parameters under "Specification" Tab, and yield the item info.

It should be noted that the product information becomes less organized in the latter pages. Such case are handled by multiple "try/except" statements. The complete code for web scraping can be found here.

3. Data

After web scraping from Newegg.com, the data were cleaned using this R script.

For CPU data, the key variables that are included in analysis are:

name brand series # cores freq (GHz) power (W) price ($) URL rating rank
chr chr factor int num num num chr factor int

For graphic cards data, the key variables are:

name brand chip gpu coreclock (MHz) memory size price ($) URL rating rank
chr chr factor chr num num num chr factor int

Other variables like L3/L2 cache for CPU, and memory clock/interface for graphic cards are not included in data analysis.

4. Visualization

In this part, exploratory graphs are drawn to visualize the selling trend of CPUs and graphic cards. In terms of the overall market distribution, AMD and Intel are competing for dominance in CPU area, while AMD and Nvidia are two biggest GPU chip manufacturers.

cpugpurating

Figure 4. Distribution of CPU and graphic cards rating

First let's look at the customer rating distribution of CPU and graphic card that are currently selling on Newegg. For CPU, the customer ratings is ranging from 4 points to 5 points, indicating that CPU is overall reliable for nearly all products. On the other hand, some graphic card get rated only 1 points and 3 points, meaning the quality for graphic cards varies from product to product. When looking at the overall markets distribution, the number of Intel products is greater than AMD CPU. As for graphic card market, AMD fall behind Nvidia.

top200gpu

Figure 5. Barplot of graphic cards distribution against brands

From the barplot above, there are 10 companies sharing the graphic card markets. Some of them, like Powercolor and Sapphire, stand on the AMD side, while others like EVGA and PNY adopt Nvidia GPUs only. It is interesting to note that for companies that use both GPUs, they tends to have more Nvidia chip products over AMD chip.

top100cpucountandprice

Figure 6. Count and average price of CPUs against series

From the figure above, we can see that in top-100 best selling CPUs, although the average price of Intel product is higher than it opponent AMD, it is still leading in popularity.

cpupricevsrank

Figure 7. Price of CPUs versus selling rank

Above is the product price plotting against selling rank for top-50 CPU products. The average price increases from $200 to $500 as the rank increases to around 25, and drop below 200 when reaching rank 50. There are three Intel products ranking between 20 and 30 that are selling at above $1000 dollars, thus pulling up the average price in this region.

cpupricevscore

Figure 8. Boxplot showing price of CPUs against number of cores

As shown from the boxplot above, a positive correlation can be observed between price and number of cores. We can also clearly observe the price gap between two CPU manufactures, and such gap becomes more clear at higher number of cores.

5. Statistical Analysis

In this section, the relationship between the price of CPU products and their parameters is explored. First let's look at the correlation plot including all numeric variables in the CPU dataset.

corrplot

Figure 9. Correlation plot of CPU dataset.

It is interesting to note that the price of CPU almost has no correlation with the operating frequency, meaning that the operating frequency no longer reflects the computing power. Today CPU manufactures direct their attention on cores, threads and inner architecture to increase the performance, instead of simply adding clock speed.

Now let's see if we can use linear regression to model the price of CPUs against other variables. First let's check the normality of the price distribution.

qqplot

Figure 10. Q-Q plot of price of CPUs

From the Q-Q plot above, the prices are not quite normally distributed. Therefore we do a box-cox transformation.

boxcox

Figure 11. Log-likelihood vs. lambda indicating 95% confidence interval about the maximum observed value for lambda

From figure 11, we take the natural log of response value to increase the normality. For variable selection, CPU brands, series, number of core, power consumption and operating frequency are selected as the full model. Then AIC was applied to select the best linear model via step function in R. The variables for final model are series, power and number of cores.

model

Figure 12. Results of linear regression

Increasing of the power consumption will slightly increase the price, and CPU will cost a lot more when adding more cores to it. According to the p-value of the F-test, the overall regression model is significant, where 87% of the variability can be explained.

6. Conclusion and Future work

In summary, all CPU and graphic card product information was scraped from Newegg.com using Python Scrapy module. the data showed that the price of the CPU have a negligible correlation with the operating frequency. When looking at both CPU and graphic card data, although AMD has a wide range of product line, it is dominated by Intel and Nvidia in CPU and GPU market, respectively. A linear regression model is selected to model the natural log of price using CPU series, core and power consumption as predictors, which can explain 87% percent of variability.

In the future, this work can be expanded as follows:

  • Build an interactive app to allow others to explore and subset the dataset.
  • Scrape more features from the web, like product release date and customer reviews.
  • Apply machine learning algorithms to predict the user rating of a product based on the hardware parameters and reviews.

About Author

Xinyuan Wu

Xinyuan recently obtained his Ph.D. from North Carolina State University. He gained quantitative analysis, statistical knowledge and critical thinking from years of research on magnetic and photophysical chemistry. His belief in the trend of predictive analysis, along with...
View all posts by Xinyuan Wu >

Related Articles

Machine Learning
Ames House Prices Predictions
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models
R
R Shiny Shows Decline in Even Strongest Democracies
Machine Learning
Beware of Feature Importance for Business Decisions

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Edna July 14, 2017
Thanks, it's quite informative

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application