NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Scraping comic book reviews: Critics vs Fans

Scraping comic book reviews: Critics vs Fans

Ho Fai Wong
Posted on May 27, 2016

Contributed by Ho Fai Wong. He is currently in the NYC Data Science Academy 12 week full-time Data Science Bootcamp program taking place between April 11th to July 1st, 2016. This post is based on his third class project - Web scraping (due on the 6th week of the program).

I. Introduction

There is such a plethora of US comic book publishers and series that, as a comic book fan, it is sometimes challenging to decide which new series to try out. Luckily, multiple comic book review websites can easily be found online. Among them, comicbookroundup.com aggregates critic and fan reviews from different websites and calculates average critic and fan ratings. Do critics and fans agree though? What insights can we glean from differences in their ratings and opinions?

To answer these questions, I wrote a web scraping application using Scrapy in Python to extract the publisher, series and issue rating information from comicbookroundup.com, and analyzed it in Python using Jupyter Notebook. All the code is available here.

II. Approach

The hierarchy of these pages is summarized in the image below. To analyze critic vs user (i.e. fan) ratings, I needed to extract issue ratings from the website by crawling 3 levels down.

screenshot_hierarchy

Step 1: Crawl with Scrapy

  • Scrape publisher urls from main page: 20 publishers total
  • For each publisher, scrape series urls: 5,829 series total
  • For each series, scrape series info, issues and ratings: 33,157 issues total

Below is a snapshot of the scraping "spider" Python code illustrating these 3 steps: scraping the publisher urls to a text file, scraping each publisher page for the series urls, and then scraping each series page for the issue ratings.

Step 2: Pass to Jupyter Notebook

  • Series data:
    • Save series data to MongoDB collection
    • Load into series dataframe in Jupyter Notebook
  • Issues data:
    • Extract issues from nested dictionaries in series data into MongoDB collection
    • Load into issues dataframe in Jupyter Notebook

III. Analysis

Issues and average ratings by publisher

To start the data exploration, it would be helpful to see the relative size of each publisher and high-level ratings by critics and users.

DC and Marvel are by far the largest publishers.

Comics - Issues by Publisher

Comics - Issues by Publisher

Most ratings fall within the 7-9 range (out of 10). For most publishers, users tend to rate issues more generously than critics (i.e. publishers are located on the left of the y=x 'diagonal' line). DC and Marvel, the 2 largest publishers, are rated relatively low by critics.

Comics - Average rating by Publisher

Comics - Average rating by Publisher

Critic vs user ratings

Let's plot the critic vs user ratings for every issue in our data set. The green line represents the y=x diagonal. As seen previously, most ratings fall within the 7-9 range and critics tend to rate comics lower than users for a given issue. Also, users tend to rate a comic 2 at a minimum, whereas critics hesitate less to rate it at 1.

Comics - Critic vs user ratings

Comics - Critic vs user ratings

Looking at the rating difference (critic - user), the differences follow a normal distribution, with a mean slightly skewed to the left of 0 i.e. once again, critics tend to rate more harshly than users.

Comics - Rating difference (critic - user)

Comics - Rating difference (critic - user)

Correlation between ratings and reviews

I was curious whether there was any correlation between ratings and number of reviews. The correlation plot below shows that, as expected, critic and user ratings are correlated, as are the number of critic and user reviews. However, the number of reviews (either critic and/or user) are not strongly correlated with ratings. In other words, a popular issue could be reviewed a large number of times by critics and/or users but have a low or high rating; its popularity doesn't provide insight on its perceived quality.

Comics - Correlation between ratings and reviews

Comics - Correlation between ratings and reviews

Looking at correlations in a bit more detail, the scatterplot matrix below also shows that extreme rating differences are tied to issues reviewed by a small number of users (and therefore we probably shouldn't put too much weight to their rating). Critics, however, tend to agree more on these issues.

Comics - Scatterplot

Comics - Scatterplot

Focus on top publishers

Lastly, let's look at critic vs user ratings by publisher. I selected the top 5 for simplicity. As observed before, users tend to rate issues higher than critics, for all publishers.

DC and Marvel, the 2 largest publishers, have more issues rated poorly by critics compared to Image, Dark Horse and IDW (larger left tail of the density curve). Conversely, the latter 3 publishers have a higher concentration of highly rated issues by critics compared to DC and Marvel. This could perhaps be related to the different types and genres of comics from these different publishers (e.g. adult-themed vs child-friendly).

Comics - Focus on top publishers

Comics - Focus on top publishers

IV. Conclusion

In conclusion:

  • Overall, critic and user ratings are in line and rate comics ~7-9
  • Critics are slightly more discerning than users
  • Critics hesitate less to rate a comic very low
  • A comic's rating and number of reviews are not highly correlated
  • Comics with large rating differences between critics and users were usually rated by very few users

Ultimately, in order to discover new comics to read, it may be preferable to identify reviewers who share similar preferences, and focus on their recommendations specifically, instead of simply relying on average ratings be they from critics or fans since ratings hover around ~7-9 anyway.

Potential future steps include:

  • Building a Shiny application to search for best reviewed titles, writers and artists, and explore based on individual preferences
  • Finding outliers (e.g. series, writers, artists, issues with largest rating difference)
  • Scraping individual reviews to build word clouds, identify users who repeatedly contribute to the largest ratings differences, etc

In the meantime, if you have any comments, suggestions or insights, please comment below!

About Author

Ho Fai Wong

With a diverse background in computer science and 9 years in Financial Services Technology Consulting, Ho Fai has been applying his analytical, problem-solving, relationship and team management skills at PwC, one of the Big Four consulting firms, focusing...
View all posts by Ho Fai Wong >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Daryl January 13, 2017
I am ษ‘ fan from wood stairs entrances as they blend in to residences bettะตr inn comparison tึ… the white colored metallic kind.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application