NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > eBay Scraping using BeautifulSoup in Python

eBay Scraping using BeautifulSoup in Python

Sandra Moraes
Posted on Sep 25, 2019
The skills I demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Even though Amazon is the leader in e-commerce marketplaces – eBay still has its fair share in the online retail industry. Brands selling online should be monitoring prices on eBay as well to gain a competitive advantage. 

Extracting data from eBay at a huge scale regularly is a challenging problem for data scientists. Here is an example of scraping eBay using python to identify prices of mobile phones. 

Lets us imagine a use case where you need to monitor pricing of a product, say a mobile phone from eBay. Also, you want to visualise the range of price offering available on the mobile phone which you want to monitor. Moreover, you have other mobile phones under consideration so you may also want to compare their prices as well. In this blog, we will be scraping eBay to collect the prices of phones and find out the difference between their offerings on the eBay website.

Web scraping is an efficient mechanism for collecting data from the internet. You can also read about different myths about web scraping here.

Scraping eBay step by step

In this section, we will walk you through the step by step process of scraping eBay for products and their prices. 

1.Selecting the required information

The very first task in web scraping is to identify the target web page. It is the web page from which you need to extract all the required information. We will be scraping eBay for the product listings so we can just open the eBay website and type our product in their search bar and hit enter. Once page loads with all the product listing of that product, all you need to do is pull that URL out from the browser.

This URL will be our target URL. In our case, the URL will be “https://www.ebay.com/sch/i.html?_from=R40&_nkw=galaxy+note+8&_sacat=0&_pgn=1“. Notice the two parameters in this URL i.e. “nkw” (new keyword) and “pgn” (page number) parameter. These parameters in the URL defines the search query. If we change “pgn” parameter to 2, then it will open the second page of the product listings for galaxy note 8 phone and if we were to change “nkw” to iPhone X then eBay will search for iPhone X and will show you the corresponding results.

2. Finalising the tags for extraction

Once we have finalised the target web page, we need to understand its HTML layout to scrape the results out. This is the most important and critical part of the web scraping and basic HTML knowledge is a pre-requisite for this step. When on the target web page, do “inspect element” and open the developer tools window or just do CTRL+SHIFT+I. In the new window, you will find the source code of the target web page.

In our case,  all the products are mentioned as list elements so we have to grab all these lists. In order to grab an HTML element, we need to have an identifier associated with it. It can be an id of that element or any class name or any other HTML attribute of the particular element. We are using the class name as the identifier. All the lists have the same class name i.e. s-item. On further inspection, we got the class names for the product name and product price which are “s-item__title” and “s-item__price” respectively. With this information, we have successfully completed step 2!

3. Putting the scraped data in a structured format
After having our extractors/identifiers we only need to extract specific portions out from the HTML content. Once this is done, we need to organise this data into a suitable structured format. We will be creating a table where we will have all the product names in one column and their prices in the other.

4. Visualising the results (optional)
Since we are to compare the price offerings on two different mobile phones, we will visualise the results too. This is not a mandatory step for web scraping but is more of a process to turn your collected data into some actionable insights. We will be plotting boxplots to understand the distribution of the price offerings on both galaxy note 8 and iPhone 8 mobile phones.

Required libraries and Installation

To implement web scraping for this use case, you will need python, pip (package installer for python) and BeautifulSoup library in python for web scraping. You will also need pandas and numpy library to organise the collected data into a structured format. 

  1. Installing Python and PIP
    Depending upon your operating system, you can follow this blog link to setup python and Pip in your system.
  2. Installing Beautiful soup library
    apt-get install python-bs4
    pip install beautifulsoup4
  3. Installing pandas and numpy
    pip install pandas
    pip install numpy

    We are done setting up our environment and now can begin with the scraping implementation using python. Implementation consists of the steps discussed in the earlier section.

  4. Python implementation for scraping eBay

    In this section, we will perform two scraping operations i.e. one for the iPhone 8 and other for the galaxy note 8 mobile phones. Implementation has been repeated for the two mobile phones for easier comprehension. A more optimised version can have two separate scrapping activity combined into one which is not required right now though.

    Scrapping eBay for Galaxy Note 8 products

    item_name = []
    prices = []
     
    for i in range(1,10):
     
        ebayUrl = "https://www.ebay.com/sch/i.html?_from=R40&_nkw=note+8&_sacat=0&_pgn="+str(i)
        r= requests.get(ebayUrl)
        data=r.text
        soup=BeautifulSoup(data)
     
        listings = soup.find_all('li', attrs={'class': 's-item'})
     
        for listing in listings:
            prod_name=" "
            prod_price = " "
            for name in listing.find_all('h3', attrs={'class':"s-item__title"}):
                if(str(name.find(text=True, recursive=False))!="None"):
                    prod_name=str(name.find(text=True, recursive=False))
                    item_name.append(prod_name)
     
            if(prod_name!=" "):
                price = listing.find('span', attrs={'class':"s-item__price"})
                prod_price = str(price.find(text=True, recursive=False))
                prod_price = int(sub(",","",prod_price.split("INR")[1].split(".")[0]))
                prices.append(prod_price)
     
    from scipy import stats
    import numpy as np
     
    data_note_8 = pd.DataFrame({"Name":item_name, "Prices": prices})
    data_note_8 = data_note_8.iloc[np.abs(stats.zscore(data_note_8["Prices"]))< 3,]

    Collected Data for Galaxy note 8

  5. Scraping eBay using BeautifulSoup in Python

Scrapping eBay for iPhone 8 

item_name = []
prices = []
 
for i in range(1,10):
 
    ebayUrl = "https://www.ebay.com/sch/i.html?_from=R40&_nkw=iphone+8_sacat=0_pgn="+str(i)
    r= requests.get(ebayUrl)
    data=r.text
    soup=BeautifulSoup(data)
 
    listings = soup.find_all('li', attrs={'class': 's-item'})
 
    for listing in listings:
        prod_name=" "
        prod_price = " "
        for name in listing.find_all('h3', attrs={'class':"s-item__title"}):
            if(str(name.find(text=True, recursive=False))!="None"):
                prod_name=str(name.find(text=True, recursive=False))
                item_name.append(prod_name)
 
        if(prod_name!=" "):
            price = listing.find('span', attrs={'class':"s-item__price"})
            prod_price = str(price.find(text=True, recursive=False))
            prod_price = int(sub(",","",prod_price.split("INR")[1].split(".")[0]))
            prices.append(prod_price)
 
from scipy import stats
import numpy as np
 
data_note_8 = pd.DataFrame({"Name":item_name, "Prices": prices})
data_note_8 = data_note_8.iloc[np.abs(stats.zscore(data_note_8["Prices"])) < 3,]

Collected data for iPhone 8

Scraping eBay using BeautifulSoup in Python

scraping eBay | Iphone data

Visualising the price of products

Now is the time to visualise the scraped results. We will be using the boxplots to visualise the distribution of prices of mobile phones. Box plot helps us in visualising a trend in numerical values. The green line is the median of the collected price data. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of the box to show the range of the data.

Scraping eBay using BeautifulSoup in Python

scraping eBay | Price Comparison

For iPhone 8, most of the prices lie between INR 25k-35k whereas most of the galaxy note 8 phones are available in the price range of 25k-30k. However, variation in prices of iPhone 8 is much more than galaxy note 8. iPhone 8 is available for minimum INR 15k on eBay whereas the minimum cost of galaxy note 8 on eBay is around 22-23K INR!

In this blog, we successfully used python for scraping eBay for two different products and their pricing. We also compared the available prices for galaxy note 8 and iPhone 8 to make a better purchase decision. Web scraping coupled with data science can be leveraged for smart decision making be it in the fortune 500 companies or in your day to day life.

 

 

About Author

Sandra Moraes

View all posts by Sandra Moraes >

Related Articles

AWS
Automated Data Extraction and Transformation Using Python, OpenAI, and AWS
Python
Can the data from EA's FIFA Potential Rating Help Bettors?
Data Visualization
Using Data to Get Cats Adopted on petfinder.com
Data Visualization
Wine 101: Gathering Data From Vivino
Python
Using Data to Analyze The Library of Audible

Leave a Comment

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application