NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Machine Learning > Studying Data to Predict Housing Prices in Ames

Studying Data to Predict Housing Prices in Ames

Sabbir Mohammed, Eric Adlard and Ryan Essmer
Posted on Mar 7, 2019
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

Kaggle Competition: Housing Dataset from Ames, IA

Advanced Regression Techniques

by The Bench Initiative

  • Eric Adlard
  • Ryan Essner
  • Sabbir Mohammed
The code for this project can be found here.

INTRODUCTION:

The Ames Housing dataset was compiled by Dean De Cock and is commonly used in data science education, it has 1460 observations with 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa. This dataset is part of an ongoing Kaggle competition which challenges you to predict the final price of each home. The goal of our project was to utilize supervised machine learning techniques to predict the housing prices for each home in the dataset. It became clear that the high number of features, with most of them being categorical was going to be a challenge. Our steps towards creating a highly accurate model were as follows:

  1. Data exploration and cleaning
  2. Feature engineering
  3. Modeling

 


 

1. Data exploration and cleaning

The dataset was obviously very complex and detailed. This required careful attention to detail and a thorough examination of the many feature variables. The following table demonstrates a summary of our work for this initial step:

Studying Data to Predict Housing Prices in Ames

Another graphical view of our analysis is the following correlation plot from all the quantitative variables identified. Although this might not necessarily provide directly actionable or inferential information, it definitely aided in our exploration of the data.

Studying Data to Predict Housing Prices in Ames

Sale price is the value we are looking to predict in our project, so it made sense to examine this variable first. The sale price exhibited a right-skewed distribution which was corrected by taking the log. Once the log was taken, we were no longer violating the normality assumption for regressions.

Sale Price without any transformations:

Studying Data to Predict Housing Prices in Ames

Sale Price with log transformation:

Missingness and imputation

Next, we decided to look at missing values by feature in the train and test dataset. As you can see above there was significant missingness by feature across the train and test datasets. Most of the missing data corresponded to the absence of a feature. For example, the Garage features, mentioned in the above table, showed up as "NA" if the house did not have a garage. These were imputed as 0 or "None" depending on the feature type. Below is a breakdown of how we handled imputation across all the features.

 


 

2. Feature Engineering

The specific points that were addressed in our feature engineering are as follows:

  • GarageYear  โ†’ There was an observation with a GarageYear of 2207. After confirming with YearBuilt, we concluded that this should be changed to 2007.
  • MSSubClass โ†’ Converted to String-type as this is really a categorical variable.
  • "Zero" inflated features (such as PoolArea, OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch) โ†’  Converted to ordinal features reflecting whether or not the feature exists for a given observation
  • Ordinal Categorical features were encoded into Numerical-type
  • Nominal Categorical features were Dummified
  • Outliers โ†’ Removed observations with GrLivArea >  4500
  • Standardized numerical features
  • Log transformation applied to the response variable, "Sale Price"

As a demonstration, the following is a snapshot of the encoding that was implemented on ordinal categorical features:

Newly Created Features:

As part of our feature engineering, we analyzed the set of features to craft new, additional features that combine information from existing variables, thus reducing model complexity. These include the following:

  • PorchSF โ†’ Reflects the total square feet of all porch areas: OpenPorchSF + EnclosedPorch + 3SsnPorch + ScreenPorch
  • TotalBath โ†’ Reflects the total number of baths the house has: BsmtFullBath + 0.5*BsmtHalfBath + FullBath + 0.5*HalfBath
  • TotalSF โ†’ Total Square feet of house
  • MultiFloor โ†’ New Ordinal feature that reflects whether or not the house had multiple stories

 


 

3. Data on Models

We approached the regression problem of predicting the final Sale Price of houses in Ames, IA using fundamental, supervised machine learning techniques. Namely, we used penalized regression techniques such as Ridge, Lasso, and their composite, ElasticNet. As an additional effort, we also attempted Stacking and Random Forest techniques in the hope of generating different results.

The general pipeline for building our models included:

  1. Standardization of numerical features
  2. Hyperparameter tuning using gridsearch and k-folds,
  3. K-folds for model selection utilizing cross_val_score, and
  4. Retraining models on the entire training set, using the optimized  hyperparameters.

The ridge model appeared to perform the best, with an RMSE score of 0.12116 as reported from the kaggle site.

"Reduced" Models

Model complexity was definitely a concern for a data set of this width. In an attempt to introduce a reduced data set, so that the model results could be more interpretable as well as addressing the potential for high variance due to a large number of features - we simply removed features and reduced the data set to include, mainly variables involving housing size and location. This newly modified data set included:

  • 26 original features, plus new variables aggregating living area, number of bathrooms  & porch areas (shown below)
  • A final count of 88 feature variables including dummified variables

We decided to build Ridge, Lasso and ElasticNet models on this reduced data set to test whether lowering the complexity of the data let led to simplified results. We employed k-folds cross validation to optimize our choice of hyper-parameters(using k=3). Visually, the number of features were still too high to reveal any insight into the penalized reduction of cefficients.

Ridge Regression Model:

Lasso Regression Model:

Very predictably however, in seeking the right balance within the bias-variance tradeoff by reducing complexity, we very clearly removed features that contained within them, valuable predictive information. In essence, while we may have reduced variance, we increased bias and overshot our model accuracy. As such, the Root Mean Squared Error (RMSE) as measured by the kaggle site against a test data set was significantly increased.

"Reduced" model performance:

 


 

CONCLUSIONS

This was definitely a rewarding project and our participation in this kaggle.com competition exposed us to the challenges of machine learning projects in general and on a larger scope, the mindset needed to approach data science problems.

Focusing on future efforts to improve our models in this project, or even to develop our own individual styles going forward, we have compiled a list of improvements. The lesson from the "reduced" data set is simply that we need to apply more refined feature engineering in order to work towards the optimal balance between bias and variance. The importance of domain expertise is something that also became very apparent.

Additionally, as we hone our craft and expand our skills, one aspect we would have liked to explore is the use of more models and different approaches to identify the best solution for this problem. We choose to keep our methods simple and robust in order to learn and ensure our understanding, but perhaps being able to apply newer methods and models will yield better results. 

Another consideration that would actually expand the scope of the problem and its solution, is to include and analyze external data involving local policy changes and economic trends in the housing market specific to Ames, IA. Perhaps, adding even more data such as school zoning or transportation and commercial information would produce models with more predictive power.

 


 

Thank you for viewing our project!

-  We welcome all comments and suggestions  -


 

About Authors

Sabbir Mohammed

Sabbir is an aspiring data scientist with a recent certification from the NYC Data Science Academy. He obtained his BS in Mechanical Engineering from Rensselaer Polytechnic Institute and has since spent several years in logistics and procurement for...
View all posts by Sabbir Mohammed >

Eric Adlard

Eric is an aspiring data scientist with a track record of using data to drive business insights in financial services. He has hands-on experience in R and Python in web-scraping, data visualization, supervised and unsupervised machine learning, as...
View all posts by Eric Adlard >

Ryan Essmer

View all posts by Ryan Essmer >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Pandemic Effects on the Ames Housing Market and Lifestyle
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application