NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Studying Data to Predict Rental Interest

Studying Data to Predict Rental Interest

Mayank Shah
Posted on Mar 6, 2017
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

data-science_large-hero_620x260 (1)

RentHop Intro

Kaggle, a data science competition network recently acquired by Google, is home to many machine learning competitions of various types and difficulties. One of their more popular contests involves predicting the amount of interest (Low, Medium, or High) a particular rental listing will receive. To compete in this competition, I created an XGBoost-based model that ultimately scored .55724, good enough for first place in our cohort. Lets take a look at the process and the mistakes made along the way.

The Process

The listings contained the following information: Bathrooms, Bedrooms, Building ID, Date Created, Description (text), Address, Features, Lat/Long, Manager ID, Photos, and Price. Some basic EDA revealed that 70% of the listings received Low interest. As such, I oriented my thinking to identifying/creating features that would suggest higher interest than the baseline. First, I created some naive features, such as price divided by bedrooms, bathrooms, features, and photos. I then ran these features plus the original data set through XGBoost and received a log loss of .73. The chase was on.

In order to achieve greater progress, I felt I had to analyze the problem beyond just the given dataset. Most data science problems represent the backend of a common problem from everyday life. Often, a key to creating a working model is to approach the problem from the end user's perspective.

In this case, we are essentially examining what attributes makes a home more desirable. The lat/longs of the rental listings revealed them to be New York City apartments, primarily in Manhattan and nearby Brooklyn. In NYC, I suspected that neighborhood, features, price, distance to subway stops, distance to schools, and safety would all be key factors in a listing's interest. In the limited time available, I set out to encode these features.

london-underground-2085647_960_720

Dataset

First, I one-hot encoded the top 50 features, performed PCA, and reduced down to the 30 or so features that were statistically significant. I then found the lat longs for NYC neighborhoods, and created a column to display the neighborhood as a feature. I one hot encoded the addresses to show whether the listing was on an Ave or Street. By this time, the model was running a sub .60 log loss.

Finally, I found an open data set provided by the New York government listing the locations of all 1000+ subway stops in NYC. I created a distance matrix to display the nearest stop to each listing, along with the distance to that stop. This improved the model, but not as much as I would have hoped. I thought more about it, and realized I was missing a key component. Living next to a subway stop is great, but the key is living next to a subway stop that contains multiple lines connecting you with the rest of the city.

Feature

I decided to create a new feature: distance to subway stop divided by the number of lines at that particular stop (to amplify the "less is more" aspect of the original distance-to-subway feature). The result was a model with a  much improved .573 log loss.

denspop2

Density Maps

Next, I took a look at density maps of NYC in general. Like most cities, the density in NYC is not linear. There are pockets of extreme density/demand that may be just a few blocks from a (comparatively) undesirable area.

It would be nearly impossible to encode all of the desired areas into the model, and not time efficient considering our tight deadline. Instead, I decided to use a proxy. What is located in high traffic areas? What depends on foot traffic and high density for its business model? While looking at pictures of high density streets, the answer was obvious. Every fifth person was carrying their signature cup: Starbucks. There are 20,000 Starbucks locations on earth, and almost 500 alone in the NYC area. I created another feature showing the listing's distance to the nearest Starbucks and ran the model: Improvement, but very little. Again, I had a good idea that needed more thorough follow through.

Thinking about it conceptually, I imagined a listing on the western or eastern edge of Manhattan. There could be one Starbucks relatively close, but the next nearest Starbucks would be probably twice as far away, and likely in the same direction. In a popular area, however, the second closest Starbucks would theoretically be in a different direction, and maybe just slightly farther away. I decided that the average distance of the nearest four Starbucks would probably be a good proxy for the "centralness" of a listing. Encoding that feature pushed the model all the way to .561. With a little tuning (slower learning rate, more trees), our XGBoost model achieved its top score of .55724.

The Mistakes

How much time do you have? There were many, MANY misguided features added (and subsequently removed) and attempted model blends that did not improve my score. Here are a few:

  • Lasso, Ridge, and Elastic Regression - I attempted to use these models as they are strong in aspects that XGBoost is weak, possibly making for a good pairing. In this case, that theory was false
  • Sentiment Analysis - Analyzing the description for mood was a simple (and cool) bit of code that ultimately did nothing
  • Street or Avenue - The model improved when this feature was removed, go figure
  • Image Brightness - I tried to run a basic scan of the images to see how bright they were, as a proxy for whether or not they were taken professionally. The model would have taken 30+ hours to run, crowding out all other analysis time, so I aborted.
  • Junk Listings - There were several listings with incorrect or incomplete data. I tried to encode a binary "junk" feature, but it was useless. This was probably because these listings were nearly always Low interest, which was the baseline in any case.
  • Schools - I also created a distance matrix to the nearest top 45 elementary, middle, and high schools in the area. As soon as I pulled and edited that data sheet, I should have known it wouldn't be successful. All the best schools were in the worst neighborhoods.

I also attempted to reduce the entire model using PCA, and blend it with linear/generalized linear models. None of these strategies provided any improvement. In the end, this competition reinforced the idea that thinking outside of the box is just as important as pure model engineering. After this project, I am greatly looking forward to business challenges that can be solved by advanced modeling in the future.

About Author

Mayank Shah

Financial analyst -> Educational startup founder -> Facebook Analyst -> Data Scientist
View all posts by Mayank Shah >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
Acquisition Due Dilligence Automation for Smaller Firms
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Merry May 5, 2017
Really excellent post, I surely adore this website, keep on it.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application