NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship 🏆 Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release 🎉
Free Lesson
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See 🔥
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular 🔥 Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New 🎉 Generative AI for Finance New 🎉 Generative AI for Marketing New 🎉
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular 🔥 Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular 🔥 Data Science R: Machine Learning Designing and Implementing Production MLOps New 🎉 Natural Language Processing for Production (NLP) New 🎉
Find Inspiration
Get Course Recommendation Must Try 💎 An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release 🎉
Free Lessons
Intro to Data Science New Release 🎉
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See 🔥
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > Attempting to see what is not shown in PDF reports of USCIS.gov

Attempting to see what is not shown in PDF reports of USCIS.gov

Vahe Voskerchyan
Posted on Feb 20, 2017

The two main goals of this visualization project were:

  1. To get an idea if I could make any connections between the number of applications the USCIS is working on and the average length of a single application’s processing time.
  2. To obtain a general idea of USCIS performance level over time.

The data at hand is the quarterly reports on the number of petitions and applications for lawful permanent resident (LPR) status based on a family relationship with an LPR or U.S. citizen.

As it turned out, there was no unified dataset, that would contain all the quarterly reports in it. In addition to that, the CSV files for each report provided by USCIS.gov were not organized in a Data Visualization or Data Analysis friendly manner. This CSV files simply mimicked their PDF versions.Screen Shot 2017-02-20 at 2.49.02 PM

This is the first page of the PDF of the 2016 3rd Quarter Report.

The following is the look of the CSV file provided by USCIS.gov

raw data

Eventually, after cleaning the data, reorganizing it and reshaping the dataset, it was brought to a state where I was able to start my Exploratory Visualization. Bellow is a graphs representing the number of Approved applications for the category "All Other Relatives". This is actually the category where I, and my petition for my family fall into. Looking at this graph, I sadly realized a sudden drop of the number of applications approved after the 3rd Quarter of 2015.

graph

The numbers are not fluctuating as sharply in the Graphs of  "Number of Applications Received", which could possibly be the cause.

Recieved

Cleaning the Data.

The 80/20 rule showed itself in my work. 80% of my time and effort was spent on cleaning the data and reconstructing it to feet my needs. Bellow are some screenshots that demonstrate the '80%' part.

Screen Shot 2017-02-20 at 2.47.58 PM

Columns

Grouped columns

In total, to constrict a dataset containing information of 3 years, i had to clean 12 such CSV files. In addition, it seems that USCIS does not have some set standard of writing those CSV files, so every year the shape and the way the information was written into CSV would change. For instance, the data from 2011 is written in a one CSV file, and it has a horizontal shape, because there are columns of information for each quarter for the whole year. Since my goal was to create data set, in which each column represents 1 type of variable (for example, a column that has the "Number of Received Applications", or another column with "Numbers of Approved Applications"), instead of representing the same variable in different 'flavors' (for example, "Number of Received Applications, 1st Quarter, 2014", and another column with "Number of Received Applications, 2nd Quarter 2014"), the cleaning and reshaping the earlier dated CSV files was out of question. That being said, I do intend to work and expand the dataset, so that with the longer time period I can make better predictive analysis.

An example of 2013 1st Quarter dataset CSV file is bellow.

2013Long

Overall, the satisfaction of seeing a some coherent graph, that gives one a tangible perspective was worth every minute of my work. Seeing the result, even if it is a very simple histogram, does motivate me to continue with developing my data set, possible finding other sources of data and answering questions such as "Is the system used by U.S. Citizenship and Immigration Services working productive, to its full potential? Can the data analysis and modeling help improve it, and possibly show its inefficiencies in some areas? How can we shorten the wait time for all those families who wait to be united and are separated because we are spending our tax money one a "Brocken Machine"...

About Author

Vahe Voskerchyan

My main interest in Mathematics, in conjunction with my studies in Behavioral Economics and Philosophy, helped me to hone down to choosing Data science as a career. I see data science as an excellent ‘experimental lab’ where I...
View all posts by Vahe Voskerchyan >

Related Articles

Capstone
Catching Fraud in the Healthcare System
Data Analysis
Car Sales Report R Shiny App
Data Analysis
Injury Analysis of Soccer Players with Python
Capstone
The Convenience Factor: How Grocery Stores Impact Property Values
Capstone
Acquisition Due Dilligence Automation for Smaller Firms

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application