NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R > Data Study on Credit Card Clients

Data Study on Credit Card Clients

Radhey Shyam
Posted on May 1, 2016
The skills the author demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.
Contributed by Radhey Shyam. He  is currently in the NYC Data Science Academy 12 week full time Data Science Bootcamp program taking place between April 11th to July 1st, 2016. This post is based on his first class project - R visualization (due on the 2nd week of the program).

According to Business Insider, data shows credit card industry in U.S. was $4 trillion and in comparison, size of the total U.S. economy was $17.4 trillion in 2014. The credit card transactions has been increasing for years and there were $26.2 billion transactions in 2012.

Data Set

The dataset for this project consists of default payments from a major credit card company in Taiwan and is available at UCI Machine Learning Repository. The data set consists of 30,000 instances and 24 attributes consisting of gender, education profile, marital status,age, history of statement balance, payment status and binary status of default ( 1 or 0).

First of all, I read data from xls file and created data frame to store the data and created df table to store the data.For this, I wrote the following code:

Gender Contingency Table

Next, I created gender contingency table for default (1) and non-default(0) categories:

Data Study on Credit Card Clients

As we can see from the table, the data set consists of approximately 78 % (23364) individuals with default status and 22 % (6634) having non default status.

Gender Status

Then, I wanted to visualize the gender status among two categories of default and non-default.The default status is plotted on x-axis and number of individuals are plotted on y-axis and gender status was dodged on the x-axis.The numerical gender values in the dataset were changed to string values of "male" and "female".

Data Study on Credit Card Clients

As, we can see from the above bar chart, number of females is higher than males for both default and no default payment categories, but we cannot see their respective ratios. Next, I plotted another bar chart to show the gender ratio and the fill color was based on gender status.

Data Study on Credit Card Clients

Visualizing Education Profiles

Next, I thought of visualizing education profile of customers . I changed the education numeric value in the dataset to strings and created bar plots for education as factors for fill and default status on x-axis.

education_bar

We can see from above bar chart that number of customers having university education is highest,   followed by customers having graduate school and high school in both the categories. To compare their relative ratios, I made another bar graph and this time, education factor was used as fill color.

education_bar_fill

As we can see from above bar graph, ratio of customers having graduate school is higher in default payment  category as compared to no-default and ratio of customers having university education is higher in No Default Payment than Default category.

Age Distribution of Customers

Next, I wanted to compare age distribution of customers in Default Status vs no Default Payment.
For that purpose, I thought that violin plot will be best suited to show the age density among two categories.

age_violin_plot

From above age violin plot, we can see that the age peaks around 28 years in the default payment category and then it age goes on decreasing after the peak. To clearly see the peaks, I plotted the age density plots below.

age_density

Now, we can see clearly see that age peaks around 28-29 years in default category and it has lower peak around 27-28 years in no default category.

Comparing Martial Status

To compare the marital status among two categories, I first converted the numerical values in the data to their respective strings and then created the bar chart

marital_status
The above bar graph shows the ratio of individuals having single status is higher in default status vs non-default.

Monthly Default Rate

Next, I thought of calculating monthly default rate for the dataset to see its trend during observation period (April 2005 to September 2005)  . First, I took the accepted definition of default as  the individuals who have not paid for mare than two months. For calculating the monthly default rate,I divided that number by the total.

default_rate_scatter

The above scatter graph shows the default rate is linearly increasing from April 2005 to August 2005 and then slowing down in September 2005.

Correlation Plot

Finally, to find the correlation between Credit Limit, Bill amounts and payment status, I created the following correlation plot.

core_plot

The above correlation plot shows a strong correlation between credit limit and billing amounts from BILL_AMT6(April 2005)  to  BILL_AMT1 ( Sep. 2005) and no correlation between credit limit and payment status during that period.

Conclusion

In conclusion, data exploration of credit card default dataset shows 1) larger percentage of females than males in default payment category 2) percentage of  customers having graduate school degree is higher in default payment  category 3) individuals having single status have higher percentage of default than married 4) age peaks around 28-29 years in default payment category and has lower peak around around 27-28 years in no default payment category as verified from violin and density profile.3) default rate increases during the data collection from April 2005 to September 2005.
In the future, I would like to test different machine learning algorithms to predict the default status probabilities and benchmark  their performances.

About Author

Radhey Shyam

Radhey Shyam received his Ph.D. in Physics from Clemson University, USA and M.S. (Computer Science & Engineering) from GJU of Science & Technology, India. Radhey Shyam did his master's thesis on Network Monitor System, where he applied innovative...
View all posts by Radhey Shyam >

Related Articles

Data Analysis
Car Sales Report R Shiny App
Machine Learning
Ames House Prices Predictions
R Shiny
Forecasting NY State Tax Credits: R Shiny App for Businesses
R
R Shiny Shows Decline in Even Strongest Democracies
Data Visualization
Python Shows Factors Influencing University Retention Rates

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Fredrik Davรฉus August 14, 2016
Hi, I was just looking at this data set and found this blog post. If I interpret the original data description and also your blog text correctly a value of "1" in the column "default payment next month" means that the person is in default, and a value of "0" in the same column means that the person is not in default. Then I conclude that there is 6636 individuals in default and the rest in non-default. However, your first table seems to suggest that the opposite is the case. Please clarify any mistake on my part. Thanks/Regards, Fredrik
Emilio June 21, 2016
You made some decent points there. I looked on the web for the issue and found most individuals will go along with with your site.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application