NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship πŸ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release πŸŽ‰
Free Lesson
Intro to Data Science New Release πŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See πŸ”₯
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular πŸ”₯ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New πŸŽ‰ Generative AI for Finance New πŸŽ‰ Generative AI for Marketing New πŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular πŸ”₯ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular πŸ”₯ Data Science R: Machine Learning Designing and Implementing Production MLOps New πŸŽ‰ Natural Language Processing for Production (NLP) New πŸŽ‰
Find Inspiration
Get Course Recommendation Must Try πŸ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release πŸŽ‰
Free Lessons
Intro to Data Science New Release πŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See πŸ”₯
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Quantifying Uneven Health Development in the Worldβ€”A World Development Indicators Data Exploration Shiny App

Quantifying Uneven Health Development in the Worldβ€”A World Development Indicators Data Exploration Shiny App

Ziqiao Liu
Posted on Nov 16, 2016

Data Description

A development indicator is usually a numerical measure of the quality of life in a country, which is used to illustrate the progress of a country in meeting a range of economic, social and environmental goals.

The World Development Indicators (WDI) (http://data.worldbank.org/indicator) from the World Bank contain over a thousand annual indicators of economic development from hundreds of countries around the world. It is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It represents the most current and accurate global development data available and is updated quarterly covers from 1960--2015. The categories in the WDI include Agriculture & Rural Development, Aid Effectiveness, Climate Change, Economy & Growth, Education, Energy & Mining, Environment, External Debt, Financial Sector, Gender, Health, Infrastructure, Labor & Social Protection, Poverty, Private Sector, Public Sector, Science & Technology, Social Development, Trade, Urban Development

The data source is from Kaggle.

(https://www.kaggle.com/worldbank/world-development-indicators)

In this project, we select 8 indicators from the Health, Nutrition and Population (HNP) category for data exploration from 1995-2012. The data covers 186 countries divided into 7 regions (East Asia & Pacific, Europe & Central Asia, Latin America & Caribbean, Middle East & North Africa, North America, and Sub-Saharan).

Sanitation Facilities: Improved sanitation facilities, measured by % of the population with access.

Health Expenditure: Health expenditure per capita measured by 2016 US dollar.

Physicians: Number of Physicians per 1,000 people.

Life Span: Life expectancy at birth, total measured by years

Population: Total Population

Features related to a specific disease:

Tuberculosis Success: Tuberculosis treatment success rate measured by % of new cases.

Tuberculosis Detection: Tuberculosis case detection rate measured by %, all forms.

Tuberculosis Incidence: Number of incidence of tuberculosis per 100,000 people

Structure of the WDHI Shiny App

This Shiny App adopts a Navbar style and includes three tabs to examine indicators: β€œBy Year”, β€œBy Country” and β€œReference”. By clicking the β€œBy Year” tab, the user could visualize a bubble plot revealing Life Span versus other indicators among different countries . The user can also see trends over years by adjusting the sliding bar. By clicking the β€œBy Country” tab, observations based on each individual country are revealed along with a histogram plotted based on year. According to the β€œReference” tab, Β the user could get access to the whole dataset and search according to year or indicator name. Β The tab also displays the data source link and a brief introduction to the indicators.

How to Explore the Data with the Shiny App

Below is a data visualization example of Sanitation Facilities and Life Span in 1996. In the plot, each bubble represents a country and the size of the bubble depends on the population of the country. Clicking on the bubble shows the values of the improved Sanitation Facilities, Life Span, Region and Population.

When the year slider moves, the change between different years is revealed. We can investigate countries with improvements as well as poorly performing regions.We can also use visual inspection to find outliers. For example, in the plot below, Equatorial Guinea’s Sanitation Facilities value at 1996 is 81.1% while the Life Span value is only 50.7, which lags behind other countries with similar Sanitation Facilities. Countries in Sub-Saharan region also have a lower Life Span compared to other regions. People in Europe and North America countries have longer Life Spans. More indicators can be selected through the drop-down menu.

screen-shot-2016-11-05-at-8-45-15-pm

Below is a data exploration example in the β€œBy Country” tab. The graph examines Health Expenditures of the United States from 1995 to 2012.Observing the trend, the value is always increasing and it arrives at nearly $9,000 per capita in the year of 2012. For every year’s Health Expenditure distribution, other countries lag far behind the United States. In the next example below, Β Chinese Health Expenditures also increased during those years. However, they remained in the lower part of the world health expenditure distribution based on where the health expenditure rate falls on the histograms for each individual year.

screen-shot-2016-11-06-at-12-22-20-am

The last part of the Shiny App includes a data exploration tool (shown below). Country, year, and indicator name can be filtered individually to Β look for insights on a more detailed level.

screen-shot-2016-11-06-at-12-22-54-am

The user could also use the Tuberculosis series indicators as a case study. It includes the success rate, detection rate, and number of incidence. The yearly granularity of charts can reflect a country’s health development performance in handling disease control since 1995. For another example, users can check the number of physicians in each country and find its correlation to tuberculosis, life span, or improved sanitation facilities.

Conclusion

This Shiny App provides several options to investigate the world health development indicators and impacts of specific indicators on other facts with years. These can be useful to develop some prediction models to develop specific strategies for countries and regions.

About Author

Ziqiao Liu

View all posts by Ziqiao Liu >

Related Articles

Data Analysis
Injury Analysis of Soccer Players with Python
Machine Learning
Ames House Prices Predictions
Python
US Honey Production Analysis With Python (1998-2012)
Machine Learning
The Ames Data Set: Sales Price Tackled With Diverse Models
Python
EDA and machine learning Ames housing price prediction project

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    © 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application