NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > R > Looking for a Good Wine?

Looking for a Good Wine?

Andrew Dodd
Posted on Feb 3, 2018

The skills the authors demonstrated here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

The Wine App

Link:     https://adodd202.shinyapps.io/wine-reviews/

1.0   Concept

My girlfriend drinks wine, she enjoys it, understands the differences between Cabernet Sauvignon and a Pinot Noir. She knows good wine from bad wine. I do not know these things.

But I can make an app that does. This was my goal for the project, to create an easy user interface to select wines based on how good they are and their various traits. For example, I want a Riesling that is under $50? I can find it. What if I don't know much about wine varieties but I know I want a good one, and it should be sweet, and I like raspberries? Well I can find that too.

2.0   Initial Solution

   2.1   Data

To create an app that would be useful in selecting wine, I first needed a dataset. I found such a dataset with approximately 120,000 wine titles on Kaggle's datasets. You can find it here:

https://www.kaggle.com/zynicide/wine-reviews

The dataset had a number of useful properties for each wine title such as: description, variety, taste tester, twitter handle, country, province, region, price, and rating. This made it a great dataset due to not only its length but its variety of information, both numeric and text.

   2.2  Filtering and Graphing

In order to filter and graph the data, this was a fairly straightforward process, though dealing with R Shiny could sometimes be troublesome. My goal here was to make sure I had a solid understanding of Shiny fundamentals.

With the user interface filters implemented a user could find a variety, set a price cutoff and see the best results in graphical form or list form. One interesting area that I fiddled with but never finished due to time was adding a hover output to ggplot. I did this with a resizing distance threshold that would display the closest result on the graph and look it up in the dataset and display it below the graph. The hover tool would show the output when it gets within a distance threshold of the datapoint.

However, due to the changing scales of the table, I noticed that the tool was often finicky. I solved this by scaling the distance threshold by the size of the window.

   2.3   Shiny Globe and Geocoding

One of my side goals of this project was to create a nice map visualization of the wine data for the user to look at and get a feel for. I wanted it to be clear what wines come from where in the world. In order to do this I could use a more standard map package. But in my search for options, I came across a package called Shiny Globe that would display essentially a normalized bar-graph on a 3D rendition of the Earth. I liked the idea of the visual impact of Shiny globe with the colored bars coming out of different areas. So now, once the filtering was performed, the wine counts would be displayed on the globe.

However, before using the Shiny Globe package, I needed to get latitude and longitude for all of the wines. To address this need, I turned to Google geocoding. But there were 120,000 wine observations and Google's geocoding API only supports 2,500 daily queries. So I created another column in my dataset with "country", "province", and "region" concatenated and took only the unique addresses. I got out only about 1,900 rows so now I could run this set of addresses through a Google geocoding script.

Now with latitudes, longitudes, and wine counts, I could simply scale the wine counts and graph them on the Globe (see below).

3.0   Search Function

   3.1   Goal

Now that a filtering approach has been developed, I wanted to create a more streamlined user interface that would perform what is essentially filtering across many options, including options that may be in the description. For example, sure we can perform filtering by country, taste tester, province, variety, etc. But how would we find white wines? This is not a category name. How would we find sweet red wines or bitter wines with chocolate flavors? The goal was to add the words found in the description to the search algorithm.

   3.2   Implementation

To build this search function first, we want to build a lexicon of the most commonly found words in the dataset, in this case, a set of 1000 words. First we create a new column with all the useful columns pasted together, such as description, variety, country, province, etc. Once you remove stopwords ("it", "I", ".", etc.), perform stemming (removing suffixes), and words that give no insight (e.g. "wine") we see words like "Napa", "Valley", "Sweet", "Cabernet", "Dessert", "Smooth","Velvety", etc.

This was performed with the tm package in R that performs text mining for NLP (see document term matrix function). Next we want to decide on a word vectorization approach for our 120,000 wine dataset. Do we want to to count numbers of words in a single wine description or just the fact that the words are included or are not? Do we need to normalize these vectors?

I used a binary approach of words appearing; they either appeared or did not and were added to a vector of zeros and ones. Once the vector was filled with zeros and ones, it was normalized so that longer descriptions would not be unfairly favored. These vectors were concatenated onto a matrix of of the wines.

3.3 Problems

Soon I had a massive matrix with nearly a gigabyte of data! I had a feeling that this would be difficult to work with for Shiny server memory reasons, performing matrix operations, etc. Even on my own laptop, things were running slowly. It is likely that with Python and working on a GPU, this computational issue would be an easily forgotten issue. But in R on a server without easy access to computationally efficient libraries, I decided to parse down the data.

My first change was to experiment with taking a small subset of wines, only 3,000 of the original 120,000. I thought a random subset of this size would give enough representation to a variety of wines while decreasing memory requirements substantially. I also experimented with decreasing the lexicon size to 300 words but this lead to dropping out important commonly used words.  After looking into a variety of options I opted for a sparse matrix representation using the Matrix package in R. This brought my initial ~.6 Gb of data down to ~1 Mb, a data volume that would be easy to work with, even on the Shiny server.

The next step in the development of a custom search function was to convert the user input and compare it to the 3,000 wine vectors already stored in the matrix. Converting the user input to a word vector followed the same process of zeros and ones vectorization by comparing it the known lexicon. Now to find the closest matches I performed a cosine similarity function between the user input and the 3,000 vectors and took the highest 100 outputs.

All that was left now was some price filtering and ordering it from highest rating at the top of the dataframe to lowest rating at the bottom (see below).

4.0   Conclusion

Overall, the goal of this project was to present the user with a novel way to view and choose their wines based on filters and keywords. This was achieved through some filtering options, ggplot and Shiny Globe for visualization, and a lexicon/cosine similarity maximization function all added into an R Shiny project.

Thanks for reading!

About Author

Andrew Dodd

I am a data scientist at NYCDSA with a mechanical engineering background (BS, Masters). My masters focused on space and robotics applications; this is where I developed my interest in machine learning through courses that involved path planning...
View all posts by Andrew Dodd >

Related Articles

Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Beware of Feature Importance for Business Decisions
Meetup
Building a Safer Future
Python
Tech Layoffs: Exploring the Trends and Industry Shifts
Meetup
Analysis of Mass Shootings and Gun Ownership in the United States

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application