NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Data Visualization > New York City Motor Vehicle Collision Data Visualization

New York City Motor Vehicle Collision Data Visualization

Hua Yang
Posted on Feb 5, 2018

Everybody loves New York City. Nobody likes car accidents. Why bother look at the motor vehicle collision data? Well, reality is reality. Road safety is by any means a critical issue, and is relevant to everybody's daily life. It's inevitable, and more often than not, a life-or-death situation indeed. Therefore, it is very important to look at the past collision history data and see what we can learn from the data to help better prevent and/or avoid collisions in the future. Meanwhile, this is a fairly challenging/interesting data-science problem by itself, which hence becomes the core motivation of this project.

The data set used is from the city government's OpenData website, where a lot of useful data sets archived by city government are provided, including 311, 911 call history, restaurant inspection, traffic volume, traffic violation, etc. The NYC motor vehicle collision data set, contains up-to-date collision record ever since July 1st, 2012, and each record shows the date, time, location, the number of injured and/or killed people (both totally and in terms of pedestrian, cyclist, and motorist, respectively), along with the causes and involved types of vehicles, etc.

Questions

Looking at such a comprehensive data set, some interesting questions directly jumped into mind are:

  • How is the data look like on a map? Can we find particularly more dangerous/risky regions of concern? What their collision history data look like, can we get any useful insight?...
  • Especially for cases with walker injured/killed and the cases with people killed in general, are their distribution over location and/or time shows any significant different pattern/feature than the overall cases? Can we identify particular dangerous spots/areas for pedestrians, cyclists, or the lethal collisions, etc. ? ...
  • What are the top, say 20, most often seen collision causes and involved types of vehicles? What can learn from it? ...

Also, some questions of general interest are:

  • What is the trend of total number of collisions from year to year? What can we predict for 2018?
  • What is the composition ratio of different types of victims (pedestrian, cyclist, motorist) and different levels of severities (no hurt, injured, lethal)?
  • Was the situation different for different boroughs (5 boroughs of NYC)? What about different days in a week, hours in a day, month in a year? ...

Objectives

To address these questions, the specific project objectives are:

  1. Develop an interactive map tool to easily check and explore collision case info on a real city map,
  2. Conduct some preliminary exploratory data analysis to get overview results on interested questions.

Interactive Map Tool

To help easily visualize and explore the spatial details of the collision data, a comprehensive and flexible interactive map tool is developed using Leaflet package of R.

       

One particular nice feature of the tool is that: it can show heat map (collision data point intensity), cluster map (clustered collision data), and lethal collision markers (with detailed collision information pop-up) all at the same time. Besides, the user has highly flexible control on what portion of data he/she'd like to see, what year, borough, month range, and for what types of victims (pedestrians, cyclists, motorists) and what severity (no hurt, injured, lethal).

Preliminary Exploratory Data Analysis

Some preliminary analysis is done to get some high-level overview picture of the data set.

Time Factors

The figures below show the total number of collisions with respect to different years (and boroughs), month in a year, day in a week, and hour in a day, respectively.

   

   

Some major observations are as follows.

  • Yearly-wise, there is an gradual collision increase since 2013, while a significant drop at 2016, but then increase again at 2017.
  • Month, weekday, hour factors show results generally well aligned w/ common sense.
  • Interestingly, Friday looks a little more like a peak day of a week in terms of number of collisions.

Particularly for the 2016 significant collision number drop, it's mainly because of the successful Vision Zero campaign launched by the city government. How/what to predict for the situation of 2018 is definitely a fairly challenging/interesting problem deserving further/deep study/investigations...

Severity and Victims

The ratios of different severity levels and types of victims are shown below.

   

   

Some primary observations are:

  • In most cases, collisions are โ€œNo-hurtโ€, which is of much higher ratio than that of the โ€œInjuredโ€ cases, while โ€œLethalโ€ collisions are very rarely seen.
  • In terms of victims, pedestrians consist of a significant portion of the total collisions, whose ratio is significantly higher than that of cyclists.

Especially for Manhattan:

  • Interestingly, it has a much higher ratio of pedestrian victims than those of the other 4 NYC boroughs, mainly due to its special situation of highly crowded skyscraper buildings.
  • Meanwhile, its โ€œno-hurtโ€ ratio is also much higher than those of the other boroughs.

It seems that the high pedestrian victim ratio may be the main contributing factor for the much higher no-hurt ratio. To confirm that, we need further investigate the no-hurt ratio of the pedestrian victims in Manhattan...

Causes and Involved Vehicles

The archived collision causes and involved types of vehicles are highlighted in the following frequency bar graphs. Note that herein to be more informative, we excluded the two most common top causes of "Driver Inattention/Distraction" and "Failure to Yield Right-of-Way", and the two most common top involved types of vehicles of "Passenger Vehicle" and "Sport Utility / Station Wagon", from the corresponding causes and vehicle graphs, respectively.

   

   

Some major observations are:

  • Besides the commonly known reasons of bad driving habits/skills, a big portion of top causes are related to mental unconsciousness/fatigue/drowsiness, etc.
  • Look at top involved vehicles, can find most of them are commercial vehicles.

With the above two observations, it looks like there may be existing reasonably high correlation between the two leading factors of drowsiness and commercial vehicle drivers. This would be a good direction for further study...

Takeaways

To facilitate the investigation/exploration of the collision data set, an interactive map tool is developed rendering comprehensive mapped information, along with flexible data control. Some preliminary analysis is done with some reasonable observations and interesting findings/thoughts for further study/investigation. Shiny app is available online. Source code is available at Github.

In summary, based on the top 20 causes and involved types of vehicles results, some good road safety advice are:

  1. Cautiously assume/take the right-of-way,
  2. Cautiously watch out for drowsy/commercial drivers.

As for city government, some reasonable ideas/suggestions coming out of the results are: to think of and define new/effective ways, and/or maybe stronger regulations, to better prevent drowsy driving (which is in effect may not be too much different than drunk driving actually), unsafe backing (some smart/effective way to better avoid this?), improper turning (and this?), etc. Hopefully, the more thinking/effort on these problems would help better prevent these high percentage causes of accidents in the future.

What Next

Based on findings so far, some interesting/promising directions to further pursue the topic include: 

  • Time series analysis to predict future trend 
  • Correlation analysis between drowsy and commercial drivers
  • Correlation analysis w/ other data sets, esp bad/extreme weather data, and special event/celebration data, etc.

Finally, note that investigating this important data set has been a very hot topic during the past several years. There are quite many good/solid works/analysis/results out there for reference. This study is merely another personal journey at its very beginning...

Thank you! ๐Ÿ™‚

About Author

Hua Yang

Hua attended 12-week data science bootcamp of NYCDSA, which is really a great and awesome experience. Thanks a lot!
View all posts by Hua Yang >

Related Articles

Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Beware of Feature Importance for Business Decisions
Meetup
Building a Safer Future
Python
Tech Layoffs: Exploring the Trends and Industry Shifts
Meetup
Analysis of Mass Shootings and Gun Ownership in the United States

Leave a Comment

Cancel reply

You must be logged in to post a comment.

Rebeccaders June 10, 2024
Uno Online brings the fast-paced strategy and card-shedding fun of Uno straight to your device, ready for online battles.
Interactive Visualizations of New York City โ€“ Kalle Westerling September 19, 2018
[โ€ฆ] Read more about the project here. [โ€ฆ]

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application