winedApp: Wine Recommendation and Data Analysis Web App

Posted on May 11, 2019


Don't wind up with the wrong wine at the wrong time: unwind with the world's best!

winedApp provides insights into prices, ratings, descriptions, and geographic distribution of the world's most esteemed wines. Novice or connoisseur, consumer or seller, this app will meet your oenophile needs.

In the Wine Explorer, you can enter your location, varietal, aroma, taste, vintage, and price range preferences, and retrieve information on compatible wines.

The Global Insights feature offers map visualizations of international wine trends.

Graphs and Charts provides additional lenses into relationships amongst countries of origin, varietals, prices per bottle, and ratings.

The data was sourced from ca. 36,000 wine reviews on the WineEnthusiast site. In this dataset, 145 varietals from 36 countries and 23 US states are represented. 

Further information was extracted from the Wikipedia list of grape varieties

General Trends 

  1. Wine prices (per bottle) and points awarded do not show a strong positive correlation (for certain countries, there is even a negative correlation). 
  2. The US, Italy, and France are by far the most represented in the dataset. 
  3.  The most represented varietals are Chardonnay (10, 996 entries) and Cabernet Sauvignon (9,058 entries). 
  4. Most wines fall within the range of $4-50 per bottle, but the distribution is right-skewed. The full price range is $4-2,013. 
  5. Varietals vary considerably with respect to point and price ranges, as well as country distribution. 
  6. There is a statistically significant difference between average prices per bottle for red vs. white wines ($42.47 and $30.51, respectively, with p << 0.05). 
  7. There is also a statistically significant difference regarding average point values for reds vs. whites (88.43 and 88.29, respectively, with p << 0.05, on an 80-100 point scale). 

Future Work

Features will be added and refined on a continuous basis. Any suggestions are welcome.

Current objectives include: 

  1. Testing the app on a larger dataset; 
  2. Enabling the user to determine if a given wine is available in their local area; 
  3. Building a price predictor. 

Technical Details 

Web scraping was completed using the CRAN rvest package.  The list of descriptive keywords featured in the Wine Explorer menu item was generated using the nltk (Natural Language Toolkit) in Python. All other content was produced via the R Shiny Dashboard library and associated data visualization packages. To view the app code, please visit this Github repository

External Links

App || Project Github || Author's LinkedIn 

About Author

Alexander Sigman

WIth a unique background in music composition + technology, cognitive science, and data science and extensive experience in machine learning R & D and software engineering, Alex Sigman has a passion for adding value to data, gaining actionable...
View all posts by Alexander Sigman >

Related Articles

Leave a Comment

No comments found.

View Posts by Categories

Our Recent Popular Posts

View Posts by Tags

#python #trainwithnycdsa 2019 airbnb Alex Baransky alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus API Application artist aws beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep Bundles California Cancer Research capstone Career Career Day citibike clustering Coding Course Demo Course Report D3.js data Data Analyst data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization Deep Learning Demo Day Discount dplyr employer networking feature engineering Finance Financial Data Science Flask gbm Get Hired ggplot2 googleVis Hadoop higgs boson Hiring hiring partner events Hiring Partners Industry Experts Instructor Blog Instructor Interview Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter lasso regression Lead Data Scienctist Lead Data Scientist leaflet linear regression Logistic Regression machine learning Maps matplotlib Medical Research Meet the team meetup Networking neural network Neural networks New Courses nlp NYC NYC Data Science nyc data science academy NYC Open Data NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time Portfolio Development prediction Prework Programming PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn Selenium sentiment analysis Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau team TensorFlow Testimonial tf-idf Top Data Science Bootcamp twitter visualization web scraping Weekend Course What to expect word cloud word2vec XGBoost yelp