NYC Data Science Academy| Blog
Bootcamps
Lifetime Job Support Available Financing Available
Bootcamps
Data Science with Machine Learning Flagship ๐Ÿ† Data Analytics Bootcamp Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lesson
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories Testimonials Alumni Directory Alumni Exclusive Study Program
Courses
View Bundled Courses
Financing Available
Bootcamp Prep Popular ๐Ÿ”ฅ Data Science Mastery Data Science Launchpad with Python View AI Courses Generative AI for Everyone New ๐ŸŽ‰ Generative AI for Finance New ๐ŸŽ‰ Generative AI for Marketing New ๐ŸŽ‰
Bundle Up
Learn More and Save More
Combination of data science courses.
View Data Science Courses
Beginner
Introductory Python
Intermediate
Data Science Python: Data Analysis and Visualization Popular ๐Ÿ”ฅ Data Science R: Data Analysis and Visualization
Advanced
Data Science Python: Machine Learning Popular ๐Ÿ”ฅ Data Science R: Machine Learning Designing and Implementing Production MLOps New ๐ŸŽ‰ Natural Language Processing for Production (NLP) New ๐ŸŽ‰
Find Inspiration
Get Course Recommendation Must Try ๐Ÿ’Ž An Ultimate Guide to Become a Data Scientist
For Companies
For Companies
Corporate Offerings Hiring Partners Candidate Portfolio Hire Our Graduates
Students Work
Students Work
All Posts Capstone Data Visualization Machine Learning Python Projects R Projects
Tutorials
About
About
About Us Accreditation Contact Us Join Us FAQ Webinars Subscription An Ultimate Guide to
Become a Data Scientist
    Login
NYC Data Science Acedemy
Bootcamps
Courses
Students Work
About
Bootcamps
Bootcamps
Data Science with Machine Learning Flagship
Data Analytics Bootcamp
Artificial Intelligence Bootcamp New Release ๐ŸŽ‰
Free Lessons
Intro to Data Science New Release ๐ŸŽ‰
Find Inspiration
Find Alumni with Similar Background
Job Outlook
Occupational Outlook
Graduate Outcomes Must See ๐Ÿ”ฅ
Alumni
Success Stories
Testimonials
Alumni Directory
Alumni Exclusive Study Program
Courses
Bundles
financing available
View All Bundles
Bootcamp Prep
Data Science Mastery
Data Science Launchpad with Python NEW!
View AI Courses
Generative AI for Everyone
Generative AI for Finance
Generative AI for Marketing
View Data Science Courses
View All Professional Development Courses
Beginner
Introductory Python
Intermediate
Python: Data Analysis and Visualization
R: Data Analysis and Visualization
Advanced
Python: Machine Learning
R: Machine Learning
Designing and Implementing Production MLOps
Natural Language Processing for Production (NLP)
For Companies
Corporate Offerings
Hiring Partners
Candidate Portfolio
Hire Our Graduates
Students Work
All Posts
Capstone
Data Visualization
Machine Learning
Python Projects
R Projects
About
Accreditation
About Us
Contact Us
Join Us
FAQ
Webinars
Subscription
An Ultimate Guide to Become a Data Scientist
Tutorials
Data Analytics
  • Learn Pandas
  • Learn NumPy
  • Learn SciPy
  • Learn Matplotlib
Machine Learning
  • Boosting
  • Random Forest
  • Linear Regression
  • Decision Tree
  • PCA
Interview by Companies
  • JPMC
  • Google
  • Facebook
Artificial Intelligence
  • Learn Generative AI
  • Learn ChatGPT-3.5
  • Learn ChatGPT-4
  • Learn Google Bard
Coding
  • Learn Python
  • Learn SQL
  • Learn MySQL
  • Learn NoSQL
  • Learn PySpark
  • Learn PyTorch
Interview Questions
  • Python Hard
  • R Easy
  • R Hard
  • SQL Easy
  • SQL Hard
  • Python Easy
Data Science Blog > Student Works > Data Study on a Successful Kickstarter Campaign

Data Study on a Successful Kickstarter Campaign

Tristan Dresbach
Posted on Oct 22, 2018
The skills we demoed here can be learned through taking Data Science with Machine Learning bootcamp with NYC Data Science Academy.

What characteristics maximize the probability of a successful Kickstarter Campaign?

I. ABSTRACT

Kickstarter is one of the most popular crowdfunding platform on the internet, with an accumulated 3.9 billion in pledged US Dollars. The aim of this project is to web scrape data from Kickstarter and identify key characteristics that comprise a successful project.

II. INTRODUCTION

Investors on the Kickstarter platform, in contrast to traditional funding (angel investors, small business loans or using one's own assets/cash), truly believe in the creator's project. I am not talking about confidence in a project based on its scalable revenue model or its presentation as a high growth investment. Instead, investors are attracted via 'rewards' setup by the project creator that guarantee a certain level of gift related to the project, which corresponds to the level of the donation. Essentially, Kickstarter matches creators with investors who share a true passion and interest for the project.

The steps to launch a Kickstarter project are simple:

  1. create a project
  2. set the minimum funding goal
  3. set reward levels, and
  4. choose a deadline.

Aspects of these steps will be further explored below, in V. Data Analysis, to demonstrate how a campaign's probability of success can be optimized since projects that fail to secure 100%  funding will see individuals receive refunds for their .

III. DATA WEB-SCRAPING PROCESS

The first step in creating a script for data scraping is to determine how to iterate through each individual Kickstarter project page to extract 20+ variables. To do so, I created three main loops and one subsidiary loop.

  • Loop#1 went through each category and subcategory you see below, which provided the front page for each subcategory. I found that Kickstarter only allows users to reach page = 200 for a subcategory.
  • Loop#2 used all urls provided by loop#1 with a page number added from [1;x] with x being given by the user. Loop#2 then extracted all project specific urls for each page, with each subcategory having max. 12 projects/page.
  • Loop#3 went through each individual project page and obtained the variables needed for analysis: pledged $s, creation date, final date, creator, location, category, etc...
  • Loop#4, the subsidiary loop, was of a much smaller size and extracted information from the FAQ section of each url in loop#3 to compliment the majority of variables pulled in loop#3.
Data Study on a Successful Kickstarter Campaign

Exploring Kickstarter Sub-Categories

Data Study on a Successful Kickstarter CampaignExample Project Page

When inspecting Kickstarter's html elements and testing my XPathsโ€™ in Scrapy Shell, it became evident that the website was almost entirely run on JavaScript. Unfortunately, Scrapy on its own completely ignores JS elements which meant I could only collect about 15% of my requested data. After a bit of research, I integrated a lightweight web browser, ScrapySplash, which properly renders JS pages in a manner that enables Scrapy to read the pagesโ€™ elements.

Another issue was being IP banned by Kickstarter. I ended up having to increase my download delay from 1 second to 3 seconds and running my script on another machine.

IV. DATA CLEANING

Having extracted Kickstarter's project data, there were multiple modifications that had to be done in python to clean-up the data for analysis (below are the 5 main changes):

  1. convert location string into separate 'city' and 'state' strings
  2. convert strings of the number of updates, rewards levels, created projects and date into integers
  3. create a '%funded' variable ($s funded/$s pledged) as the success metric for my project
  4. create a 'duration' of project variable based off of project creation and end dates
  5. eliminate rows with NA or null values
Data Study on a Successful Kickstarter Campaign

Main Variables from Data Cleaning

V. DATA ANALYSIS

I first took a look at the distribution of success rates:

As is quite apparent, there are severe outliers in the data. To remedy this situation, I applied a basic IQR of Q1 and Q3 to my data. I then tweaked the IRQ range so as to encompass relevant funding %s. Results are seen below:

The next step was determining the main characteristics that made up a successful project:

1. Type of project to be launched based on quartile distribution vs %funded: Dance, Theater or Music.

At a sub-category level, Dance and Theater both had similar inter-category distributions, however, for Music, it would be best to stay away from Hip-Hop and Electronic Dance music as both means are below 40% funded.

2. Ideal funding goal for the project: between [$300;$1700] is the ideal range and more specifically, $400 and $300.

3. Duration of campaign: except for a 1-day campaign, the ideal duration range is [1 week; 4 weeks] with a much higher probability of success for 1, 9 and 15 day campaigns.

4. Campaign launch location: Vermont is the best state and Wyoming is this worst.

5. Additional features: number of updates, reward levels and comments: Comments and updates have the heaviest impact on funding %, with values above 20 for both values strongly increasing the probability of a successful campaign.

VI. FURTHER WORK

1) Obtain more data: at least 200 rows / subcategories

2) Make scrapy code more efficient to minimize time taken to scrape

3) Build a model to predict the success of a project

About Author

Tristan Dresbach

Tristan is an aspiring data scientist with a track record of using data to drive significant and tangible business results in retail and financial services. He has hands on experience in R and Python in web-scraping, data visualization,...
View all posts by Tristan Dresbach >

Related Articles

Capstone
Acquisition Due Dilligence Automation for Smaller Firms
Machine Learning
Beware of Feature Importance for Business Decisions
Meetup
Building a Safer Future
Python
Tech Layoffs: Exploring the Trends and Industry Shifts
Meetup
Analysis of Mass Shootings and Gun Ownership in the United States

Leave a Comment

Cancel reply

You must be logged in to post a comment.

No comments found.

View Posts by Categories

All Posts 2399 posts
AI 7 posts
AI Agent 2 posts
AI-based hotel recommendation 1 posts
AIForGood 1 posts
Alumni 60 posts
Animated Maps 1 posts
APIs 41 posts
Artificial Intelligence 2 posts
Artificial Intelligence 2 posts
AWS 13 posts
Banking 1 posts
Big Data 50 posts
Branch Analysis 1 posts
Capstone 206 posts
Career Education 7 posts
CLIP 1 posts
Community 72 posts
Congestion Zone 1 posts
Content Recommendation 1 posts
Cosine SImilarity 1 posts
Data Analysis 5 posts
Data Engineering 1 posts
Data Engineering 3 posts
Data Science 7 posts
Data Science News and Sharing 73 posts
Data Visualization 324 posts
Events 5 posts
Featured 37 posts
Function calling 1 posts
FutureTech 1 posts
Generative AI 5 posts
Hadoop 13 posts
Image Classification 1 posts
Innovation 2 posts
Kmeans Cluster 1 posts
LLM 6 posts
Machine Learning 364 posts
Marketing 1 posts
Meetup 144 posts
MLOPs 1 posts
Model Deployment 1 posts
Nagamas69 1 posts
NLP 1 posts
OpenAI 5 posts
OpenNYC Data 1 posts
pySpark 1 posts
Python 16 posts
Python 458 posts
Python data analysis 4 posts
Python Shiny 2 posts
R 404 posts
R Data Analysis 1 posts
R Shiny 560 posts
R Visualization 445 posts
RAG 1 posts
RoBERTa 1 posts
semantic rearch 2 posts
Spark 17 posts
SQL 1 posts
Streamlit 2 posts
Student Works 1687 posts
Tableau 12 posts
TensorFlow 3 posts
Traffic 1 posts
User Preference Modeling 1 posts
Vector database 2 posts
Web Scraping 483 posts
wukong138 1 posts

Our Recent Popular Posts

AI 4 AI: ChatGPT Unifies My Blog Posts
by Vinod Chugani
Dec 18, 2022
Meet Your Machine Learning Mentors: Kyle Gallatin
by Vivian Zhang
Nov 4, 2020
NICU Admissions and CCHD: Predicting Based on Data Analysis
by Paul Lee, Aron Berke, Bee Kim, Bettina Meier and Ira Villar
Jan 7, 2020

View Posts by Tags

#python #trainwithnycdsa 2019 2020 Revenue 3-points agriculture air quality airbnb airline alcohol Alex Baransky algorithm alumni Alumni Interview Alumni Reviews Alumni Spotlight alumni story Alumnus ames dataset ames housing dataset apartment rent API Application artist aws bank loans beautiful soup Best Bootcamp Best Data Science 2019 Best Data Science Bootcamp Best Data Science Bootcamp 2020 Best Ranked Big Data Book Launch Book-Signing bootcamp Bootcamp Alumni Bootcamp Prep boston safety Bundles cake recipe California Cancer Research capstone car price Career Career Day ChatGPT citibike classic cars classpass clustering Coding Course Demo Course Report covid 19 credit credit card crime frequency crops D3.js data data analysis Data Analyst data analytics data for tripadvisor reviews data science Data Science Academy Data Science Bootcamp Data science jobs Data Science Reviews Data Scientist Data Scientist Jobs data visualization database Deep Learning Demo Day Discount disney dplyr drug data e-commerce economy employee employee burnout employer networking environment feature engineering Finance Financial Data Science fitness studio Flask flight delay football gbm Get Hired ggplot2 googleVis H20 Hadoop hallmark holiday movie happiness healthcare frauds higgs boson Hiring hiring partner events Hiring Partners hotels housing housing data housing predictions housing price hy-vee Income industry Industry Experts Injuries Instructor Blog Instructor Interview insurance italki Job Job Placement Jobs Jon Krohn JP Morgan Chase Kaggle Kickstarter las vegas airport lasso regression Lead Data Scienctist Lead Data Scientist leaflet league linear regression Logistic Regression machine learning Maps market matplotlib Medical Research Meet the team meetup methal health miami beach movie music Napoli NBA netflix Networking neural network Neural networks New Courses NHL nlp NYC NYC Data Science nyc data science academy NYC Open Data nyc property NYCDSA NYCDSA Alumni Online Online Bootcamp Online Training Open Data painter pandas Part-time performance phoenix pollutants Portfolio Development precision measurement prediction Prework Programming public safety PwC python Python Data Analysis python machine learning python scrapy python web scraping python webscraping Python Workshop R R Data Analysis R language R Programming R Shiny r studio R Visualization R Workshop R-bloggers random forest Ranking recommendation recommendation system regression Remote remote data science bootcamp Scrapy scrapy visualization seaborn seafood type Selenium sentiment analysis sentiment classification Shiny Shiny Dashboard Spark Special Special Summer Sports statistics streaming Student Interview Student Showcase SVM Switchup Tableau teachers team team performance TensorFlow Testimonial tf-idf Top Data Science Bootcamp Top manufacturing companies Transfers tweets twitter videos visualization wallstreet wallstreetbets web scraping Weekend Course What to expect whiskey whiskeyadvocate wildfire word cloud word2vec XGBoost yelp youtube trending ZORI

NYC Data Science Academy

NYC Data Science Academy teaches data science, trains companies and their employees to better profit from data, excels at big data project consulting, and connects trained Data Scientists to our industry.

NYC Data Science Academy is licensed by New York State Education Department.

Get detailed curriculum information about our
amazing bootcamp!

Please enter a valid email address
Sign up completed. Thank you!

Offerings

  • HOME
  • DATA SCIENCE BOOTCAMP
  • ONLINE DATA SCIENCE BOOTCAMP
  • Professional Development Courses
  • CORPORATE OFFERINGS
  • HIRING PARTNERS
  • About

  • About Us
  • Alumni
  • Blog
  • FAQ
  • Contact Us
  • Refund Policy
  • Join Us
  • SOCIAL MEDIA

    ยฉ 2025 NYC Data Science Academy
    All rights reserved. | Site Map
    Privacy Policy | Terms of Service
    Bootcamp Application